Классификация и механизмы центрального торможения. Торможение в цнс (и.м. сеченов), его виды и роль. современное представление о механизмах центрального торможения. тормозные синапсы и их медиаторы. ионные механизмы тпсп Сопряженное торможение

Билет №1

1.Понятие возбудимости. Механизм формирования мембранного потенциала покоя (МП) нервной клетки?

Возбудимость – свойство нервных и мышечных клеток отвечать на действие раздражителя возбуждением. Возбуждение – ответная реакция клетки, проявляющаяся в неспецифических и специфических реакциях.

Клетки нервной, мышечной и железистой тканей специально приспособлены к осуществлению быстрых реакций на раздражение.

Клетки этих тканей называют возбудимыми, а их способность отвечать на различные раздражения возбуждением - возбудимостью.

Возбудимость - это свойство клеточной мембраны отвечать на действие раздражающего (возбуждающего) фактора изменением проницаемости и своего электрического состояния.

Обязательным признаком возбуждения является изменение электрического состояния поверхностной клеточной мембраны, (изменение ее мембранного потенциала, МП, и генерация распространяющегося потенциала действия, ПД).

Возникнув в одной клетке или в одном ее участке, возбуждение распространяется на другие участки той же клетки или на другие клетки.

Механизм формирования мембранного потенциала покоя (МП) нервной клетки

В покое мембрана нервных волокон примерно в 25 раз более проницаема для ионов К, чем для ионов Na + , а при возбуждении натриевая проницаемость примерно в 20 раз превышает калиевую.



Большое значение для возникновения мембранного потенциала имеет градиент концентрации ионов по обе стороны мембраны. Показано, что цитоплазма нервных и мышечных клеток содержит в 30-60 раз больше ионов К + , но в 8-10 раз меньше ионов Na + и в 50 раз меньше ионов Cl - , чем внеклеточная жидкость.

Величина потенциала покоя нервных клеток определяется соотношением положительно заряженных ионов К + , диффундирующих в единицу времени из клетки наружу по градиенту концентрации, и положительно заряженных ионов Na + , диффундирующих по градиенту концентрации в обратном направлении .

Функции нейронов. Классификация нейронов?

По функциям:

а. Афферентные, или чувствительные. Служат для восприятия сигналов из внешней и внутренней среды и передачи их в ЦНС.

б. Вставочные, или интернейроны, промежуточные. Обеспечивают переработку, хранение и передачу информации к эфферентным нейронам. Их в ЦНС большинство.

в. Эфферентные или двигательные. Формируют управляющие сигналы, и передают их к периферическим нейронам и исполнительным органам.

Кроме нейронов в ЦНС имеются клетки нейроглии. Размеры глиальных клеток меньше чем нейронов, но составляют 10% объема мозга. В зависимости от размеров и количества отростков выделяют астроциты, олигодендроциты, микроглиоциты. Нейроны и глиальные клетки разделены узкой (20 нМ) межклеточной щелью. Эти щели соединяются между собой и образуют внеклеточное пространство мозга, заполненное интерстициальной жидкостью. За счет этого пространства нейроны и глионы обеспечиваются кислородом, питательными веществами. Глиальные клетки ритмически увеличиваются и уменьшаются с частотой несколько колебаний в час. Это способствует току аксоплазмы по аксонам и продвижению межклеточной жидкости. Таким образом, глионы служат опорным аппаратом ЦНС, обеспечивают обменные процессы в нейронах, поглощают избыток нейромедиаторов и продукты их распада. Предполагают, что глия участвует в формирование условных рефлексов и памяти.

Классификация нейронов по форме

По форме нейроны делят на:

Биполярные, Униполярные, Псевдоуниполярные, Мультиполярные.

Классификация нейронов по характеру вы­деляемых медиаторов

По химической характеристике вы­деляемых в окончаниях аксонов веществ, отличают нейроны:

    • Холинэргические,
    • Пептидэргические,
    • Норадреналинэргические,
    • Дофаминэргические,
    • Серотонинэргические и др.

Классификация нейронов по признаку чувствительность к разным раздражителям

По признаку чувствительность к разным раздражителям нейроны делят на

    • Моносенсорные,
    • Бисенсорные
    • Полисенсорные.

Моносенсорные нейроны располагают­ся чаще в первичных проекционных зонах коры и реагируют только на сигналы своей модальности. Например, значительная часть ней­ронов первичной зрительной коры реагирует только на световое раздражение сетчатки глаза.

Бисенсорные нейроны располагаются преимущественно во вторичных зонах коры анализатора и могут реагировать как на сигналы своей, так и на сигналы другой мо­дальности. Например, нейроны вторичной зрительной коры реаги­руют на зрительные и слуховые раздражения.

Полисенсорные ней­роны - это чаще всего нейроны ассоциативных зон мозга. Они способны реагировать на раздражение слуховой, зрительной, кожной и др. анализаторных систем.

Виды фоновой активности нейронов

Нервные клетки разных отделов нервной системы могут разря­жаться при отсутствии сенсорных раздражителей - спонтанноактивные, или фоновоактивные, их в коре около 3%. Существуют также молчащие нейроны, реагирующие импульсами только в ответ на какое-либо раздражение.

Фоновоактивные нейроны делят на:

  • тормозящиеся - урежающие частоту разрядов и
  • возбуждающиеся - учащающие частоту разрядов в ответ на какое-либо раздражение

Билет №2

1. Механизм формирования потенциала действия (ПД). Фазы потенциала действия.

2. Методы исследования ВНД.

1. Потенциал действия. Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя (например, толчка электрического тока), в этом участке возникает возбуждение, одним из наиболее важных проявлений которого служит быстрое колебание МП, называемое потенциалом действия (ПД)

В ПД принято различать его пик (т.н. спайк - spike) и следовые потенциалы. Пик ПД имеет восходящую и нисходящую фазы. Перед восходящей фазой регистрируется более или менее выраженный т.н. местный потенциал, или локальный ответ. Поскольку во время восходящей фазы исчезает исходная поляризация мембраны, ее называют фазой деполяризации; соответственно нисходящую фазу, в течение которой поляризация мембраны возвращается к исходному уровню, называется фазой реполяризации. Продолжительность пика ПД в нервных и скелетных мышечных волокнах варьирует в пределах 0,4-5,0 мсек. При этом фаза реполяризации всегда продолжительнее.

Кроме пика, в ПД различают два следовых потенциала - следо-вую деполяризацию (следовой отрицательный потенциал) и следо-вую гиперполяризацию (следовой положительный потенциал. Ам-плитуда этих потенциалов не превышает нескольких милливольт, а длительность варьирует от нескольких десятков до сотен миллисекунд. Следовые потенциалы связаны с восстановительными процессами, развивающимися в мышцах и нерве после окончания возбуждения.

Причиной возникновения ПД является изменение ионной проницаемости мембраны. В состоянии покоя, как уже говорилось, проницаемость мембраны для К+ превышает натриевую проницаемость. Вследствие этого поток положительно заряженных ионов из протоплазмы наружу превышает противоположный поток Na+. Поэтому мембрана в покое снаружи заряжена положительно.

При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается, и в конечном итоге становится примерно в 20 раз больше проницаемости для К+ Поэтому поток ионов Na+ в клетку начинает значительно превышать направленный наружу поток К+. Ток Na+ достигает величины +150 мв. Одновременно несколько уменьшается выход К+ из клетки. Все это приводит к извращению (реверсии) МП, и наружная поверхность мембраны становится заряженной электро отрицательно по отношению к внутренней поверхности. Указанный сдвиг и регистрируется в виде восходящей ветви пика ПД (фаза деполяризации).

Повышение проницаемости мембраны для ионов Na+ продолжается в нервных клетках очень короткое время. Связано оно с кратковременным открытием т.н. Na+-каналов (точнее, заслонок М в этих каналах), которое затем сменяется срочным закрытием Na+-пор с помощью т.н. Н-ворот. Этот процесс называется натриевой инактивацией. В результате поток Na в клетку прекращается.

Условия возникновения возбуждения. Для возникновения ПД необходимо, чтобы под влиянием какого-либо раздражителя произошло повышение ионной проницаемости мембраны возбудимой клетки. Однако, возбуждение возможно лишь при условии, если действующий на мембрану агент имеет некоторую минимальную (пороговую) величину, способную изменить мембранный потенциал (МП, или Ео) до некоторого критического уровня (Ек, критический уровень деполяризации). Стимулы, сила которых ниже пороговой величины, называются подпороговыми, выше - надпороговыми. Показано, что пороговая сила, необходимая для возникновения возбуждения при внутриклеточном микроэлектроде равна 10 -7 - 10-9 А.

Таким образом, главным условием для возникновения ПД является следующее: мембранный потенциал должен стать равным или меньше критического уровня деполяризации (Ео <= Eк)

2. Основной метод исследования ВНД - метод условных рефлексов. В зави-симости от характера вырабатываемого рефлекса методы его получения и реги-страции могут быть разными – от классического Павловского условного слюноотделительного рефлекса до сложных форм инструментального поведения, когда в ответ на условный сигнал необходимо выполнить определенное действие, чтобы получить подкрепление (т.н. инструментальные условные рефлексы). Наряду с этими методиками, для исследования функций высших отделов ЦНС используется и целый ряд других методов – клиническое наблюдение, методы выключения разных отделов мозга, метод раздражения, морфологические, биохимические и гистохимические методы, методы математического и кибернетического моделирования, ЭЭГ, множество методов психологического тестирования, методы изучения разных форм навязанного или спонтанного поведения в стандартных или меняющихся условиях и т.д. О них Вы более подробно узнаете на практических занятиях.

Успехи физиологии высшей нервной деятельности оказали широкое влия-ние на развитие наук о мозге и поведении. В последние года в мировой науке отчетливо выражена тенденция к интеграции сведений, полученных в смежных областях знания, и созданию на этой основе системы нейронаук. Таким образом, физиология ВНД оказалась тесно связанной с психофизиологией, нейропсихологией, сравнительной психологией, генетикой поведения, нейрофизиологией и другими областями знаний, составляющих систему нейронаук.

Билет 3

1. Основные параметры возбудимости (порог возбудимости, полезное время, аккомодация, лабильность).

Возбудимость - это свойство клеточной мембраны отвечать на действие раздражающего (возбуждающего) фактора изменением проницаемости и своего электрического состояния. Возбудимостью называется способность нервной или мышечной клетки отвечать на раздражение генерацией ПД. Основным мерилом возбудимости обычно служит реобаза. Чем она ниже, тем выше возбудимость, и наоборот

Параметры возбудимости:1. Порог возбудимости 2. Полезное время 3. Критический наклон 4. Лабильность

Порог раздражения: Минимальное значение силы раздражителя (электрического тока), необходимое для снижения заряда мембраны от уровня покоя (Е о) до критического уровня (Е к ), называется пороговым раздражителем. Порог раздражения Е п = Е о - Е к

Подпороговый раздражитель меньше по силе, чем пороговый

Надпороговый раздражитель - сильнее порогового

Полезное время- Наименьшее время, в течение которого должен действовать раздражающий стимул. (наример:При очень кратковременных раздражениях возбуждения не возникает, как бы ни была велика сила раздражения (электрофорез, фонофорез, УВЧ-терапия))

Аккомодация -это явление приспособления возбудимой ткани к медленно нарастающему раздражителю

Лабильность – это максимальное число импульсов, которое возбудимая ткань способна воспроизвести в соответствии с частотой раздражения (нерв-свыше 100 гц,мышца – около 50 гц)

Взаимодействие между симпатической и парасимпатической нервной системой. Симпатические и парасимпатические эффекты.

Между симпатическими и парасимпатическими нервами существует взаимодействие, выражающееся в том, что раздельное раздражение этих нервов вызывает со стороны некоторых органов противоположные эффекты, а одновременное возбуждение обоих нервов нередко приводит к тому, что симпатические нервы усиливают функцию парасимпатических.

Большинство внутренних органов обладают двойной иннервацией: к каждому из них подходят симпатические и парасимпатические нервы. На многие органы симпатический и парасимпатический нервы оказывают противоположное влияния.

Симпатические и парасимпатические эффекты

Орган Симпатическая Парасимпатическая
Голова Расширяет зрачки Угнетает слюноотделение Сужает зрачки Стимулирует слюноотделение и слезотечение
Сердце Повышает амплитуду и частоту сокращений Уменьшает амплитуду и частоту сокращений
Легкие Расширяет бронхи Усиливает вентиляцию Сужает бронхи Уменьшает вентиляцию
Кишечник Угнетает перистальтику Угнетает секрецию пищеварительных соков. Усиливает сокращение анального сфинктера. Усиливает перистальтику Стимулирует секрецию пищеварительных соков. Угнетает сокращение анального сфинктера.
Кровеносная система Сужает артериолы кишечника и гладких мышц, расширяет артериолы мозга и скелетных мышц. Повышает кровяное давление. Увеличивает объем крови за счет сокращения селезенки. Поддерживает постоянный тонус артериол кишечника, мозга, гладких и скелетных мышц. Снижает кровяное давление.
Кожа Вызывает сокращение мышц, приподнимающих волосы. Сужает артериолы в коже конечностей. Усиливает пототделение. Расширяет артериолы в коже лица.
Почки Уменьшает диурез
Мочевой пузырь Усиливает сокращение сфинктера мочевого пузыря. Расслабляет сфинктер мочевого пузыря.
Половой член Вызывает эякуляцию. Стимулирует эрекцию.
Железы Вызывает выброс адреналина из мозгового слоя надпочечников.

Билет №4

1. Проведение возбуждения в нервных волокнах. Законы проведения возбуждения.

Скорость распространения волны возбуждения – нервного импульса – неодинакова у разных нейронов. Для нервных волокон она определяется главным образом диаметром волокна – чем больше диаметр волокна, тем скорость проведения выше.

Скорость проведения возбуждения зависит от того, принадлежит ли нервное волокно к мякотным (миелинизированным) или является безмякотным (немиелинизированным) волокном. Оболочка жироподобного вещества миелина служит хорошим изолятором, поэтому распространение волны возбуждения имеет разную скорость в этих типах волокон.

Афферентные раздражения проводятся по волокнам, различающимся по степени миелинизации и, следовательно, по скорости проведения импульса.

Волокна типа А - хорошо миелинизированы и проводят возбуждения со скоростью до 130-150 м/с. Они обеспечивают тактильные, кинестетические, а также быстрые болевые ощущения.

Волокна типа В- имеют тонкую миелиновую оболочку, меньший общий диаметр, что приводит и к меньшей скорости проведения импульса - 3-14 м/с. Они являются составными частями вегетативной нервной системы и не участвуют в работе кожно-кинестетического анализатора, но могут проводить часть температурных и вторичных болевых раздражений.

Волокна типа С - без миелиновой оболочки, скорость проведения импульса до 2-3 м/с. Они обеспечивают медленную болевую и температурную чувствительности, а также ощущение давления. Обычно это нечетко дифференцированная информация о свойствах раздражителя.

1. Закон физиологической непрерывности. Перерезка, перевязка, а также любое другое воздействие, нарушающее целость мембраны (физиологическую, а не только анатомическую), создают непроводимость.

2. Закон двустороннего проведения. При нанесении раздражения на нервное волокно возбуждение распространяется по нему в обоих направлениях (по поверхности мембраны - во все стороны) с одинаковой скоростью.

3. Закон изолированного проведения. В нерве импульсы распространяются по каждому волокну изолированно, т.е. не переходят с одного волокна на другое. Это очень важно, так как обеспечивает точную адресовку импульса.

Связано это с тем, что электрическое сопротивление миелиновых и швановской оболочек, а также межклеточной жидкости значительно больше, чем сопротивление мембраны нервных волокон.

2. Нейрон и его компоненты. Особенности метаболизма нейронов.

Место отхождения аксона от тела нервной клетки (аксонный холмик) имеет наибольшее значение в возбуждении нейрона.

Это - триггерная зона нейрона, именно здесь легче всего возникает возбуждение. В этой области на протяжении 50-100 мкм аксон не имеет миелиновой оболочки, поэтому аксонный холмик и начальный сегмент аксона обладают наименьшим порогом раздражения (дендрит - 100 мв, сома - 30 мв, аксонный холмик - 10 мв).

Дендриты тоже играют определенную роль в возникновении возбуждения нейрона. На них в 15 раз больше синапсов, чем на соме, поэтому ПД, проходящие по дендритам к соме, способны легко деполяризовать сому и вызвать залп импульсов по аксону.

Особенности метаболизма нейронов

Высокое потребление О2. Полная гипоксия в течение 5-6 минут ведет к гибели клеток коры.

Способность к альтернативным путям обмена.

Способность к созданию крупных запасов веществ.

Нервная клетка живет только вместе с глией.

Способность к регенерации отростков

(0,5 - 4 мк/сут).

Билет №5

1. Синапсы в ЦНС и их физиологическое значение. Классификация синапсов.

Синапс - это морфофункциональное образование ЦНС, которое обеспечивает передачу сигнала с нейрона на другой нейрон или с нейрона на эффекторную клетку. Все синапсы ЦНС можно классифицировать следующим образом.

1. По локализации: центральные и периферические (нервно-мышечный, нейросекреторный синапс вегетативной нервной системы).

2. По развитию в онтогенезе: стабильные и динамичные, появляющиеся в процессе индивидуального развития.

3. По конечному эффекту: тормозные и возбуждающие.

4. По механизму передачи сигнала: электрические, химические, смешанные.

5. Химические синапсы можно классифицировать:

а) по форме контакта - терминальные (колбообразное соединение) и преходящие (варикозное расширение аксона);

б) по природе медиатора – холинергические, адренергическис, дофаминергические

Электрические синапсы. В настоящее время признают, что в ЦНС имеются электрические синапсы. С точки зрения морфологии электрический синапс представляет собой щелевидное образование (размеры щели до 2 нм) с ионными мостиками-каналами между двумя контактирующими клетками. Петли тока, в частности при наличии потенциала действия (ПД), почти беспрепятственно перескакивают через такой щелевидный контакт и возбуждают, т.е. индуцируют генерацию ПД второй клетки. В целом, такие синапсы (они называются эфапсами) обеспечивают очень быструю передачу возбуждения. Но в то же время с помощью этих синапсов нельзя обеспечить одностороннее проведение, т. к. большая часть таких синапсов обладает двусторонней проводимостью. Кроме того, с их помощью нельзя заставить эффекторную клетку (клетку, которая управляется через данный синапс) тормозить свою активность. Аналогом электрического синапса в гладких мышцах и в сердечной мышце являются щелевые контакты типа нексуса.

Химические синапсы. По строению химические синапсы представляют собой окончания аксона (терминальные синапсы) или его варикозную часть (проходящие синапсы), которая заполнена химическим веществом - медиатором. В синапсе различают пресинаптический элемент, который ограничен пресинаптической мембраной, постсинаптический элемент, который ограничен постсипаптической мембраной, а также внесинаптическую область и синаптическую щель, величина которой составляет в среднем 50 нм.

2. Рефлексы и функции спинного мозга.

Рефлекторная функция. Нервные центры спинного мозга являются сегментарными, или рабочими, центрами. Их нейроны непосредственно связаны с рецепторами и рабочими органами. Кроме спинного, мозга, такие центры имеются в продолговатом и среднем мозге. Надсегментарные центры, например промежуточного мозга, коры больших полушарий, непосредственной связи с периферией не имеют. Они управляют ею посредством сегментарных центров. Двигательные нейроны спинного мозга иннервируют все мышцы туловища, конечностей, шеи, а также дыхательные мышцы - диафрагму и межреберные мышцы.

Помимо двигательных центров скелетной мускулатуры, в спинном мозге находится ряд симпатических и парасимпатических вегетативных центров. В боковых рогах грудного и верхних сегментах поясничного отделов спинного мозга расположены спинальные центры симпатической нервной системы, иннервирующие сердце, сосуды, потовые железы, пищеварительный тракт, скелетные мышцы, т.е. все органы и ткани организма. Именно здесь лежат нейроны, непосредственно связанные с периферическими симпатическими ганглиями.

В верхнем грудном сегменте, находится симпатический центр расширения зрачка, в пяти верхних грудных сегментах - симпатические сердечные центры. В крестцовом отделе спинного мозга заложены парасимпатические центры, иннервирующие органы малого таза (рефлекторные центры мочеиспускания, дефекации, эрекции, эякуляции).

Спинной мозг имеет сегментарное строение. Сегментом называют такой отрезок, который дает начало двум парам корешков. Если у лягушки перерезать на одной стороне задние корешки, а на другой передние, то, лапки на стороне, где перерезаны задние корешки, лишаются чувствительности, а на противоположной стороне, где перерезаны передние корешки, окажутся парализованными. Следовательно, задние корешки спинного мозга являются чувствительными, а передние - двигательными.

Каждый спинальный рефлекс имеет свое рецептивное поле и свою локализацию (место нахождения), свой уровень. Так, например, центр коленного рефлекса находится во II - IV поясничном сегменте; ахиллова - в V поясничном и I - II крестцовых сегментах; подошвенного - в I - II крестцовом, центр брюшных мышц - в VIII - XII грудных сегментах. Важнейшим жизненно важным центром спинного мозга является двигательный центр диафрагмы, расположенный в III - IV шейных сегментах. Повреждение его ведет к смерти вследствие остановки дыхания.


Билет 6

1. Учение о рефлексе.

В основе деятельности ЦНС лежит рефлекторный принцип.

Рефлекс – закономерная реакция организма на изменение внешней и внутренней среды, осуществляемая при участии нервной системы в ответ на раздражение рецепторов. В процессе рефлекторной реакции воспроизводится, изменяется интенсивность или прекращается деятельность тканей, органов или организма в целом. При помощи рефлекса устанавливается адекватное соотношение активности органов в пределах системы, систем в пределах организма, организма в его взаимоотношениях с окружающей средой. Рефлекторный ответ осуществляется за минимальное время и с максимальной безошибочностью.

Представление о рефлекторном акте возникло в первой половине 17 века в трудах Р.Декарта. Он указал, что существует механизм передачи нервного возбуждения от органов чувств на нервы, управляющие мышцами. Считал, что движения у животных подчинены законам отражения. В историю науки Декарт вошел как классический дуалист, противопоставляя материальную отражательную деятельность мозга нематериальной душе, управляющей произвольной деятельностью.

Понятие “рефлекс” ввел в физиологию для обозначения отражательной функции нервной системы чешский ученый Прохазка в конце 18 в. Он показал опытным путем участие в рефлексах структур спинного мозга. Строение рефлекторной дуги гистологическими методами показали Ч.Белла и Ф.Мажанди. В 1863 г. И.М.Сеченов распространил рефлекторный принцип на деятельность головного мозга и высшие психические функции человека, сформулировав эти положения в книге “Рефлексы головного мозга” (“Попытка ввести физиологические основы в психические процессы”). Он понимал рефлекс как целостный поведенческий акт. Психические и физиологические процессы в организме человеке рассматривались И.М.Сеченовым в единстве.

С работами И.П.Павлова связана эпоха в физиологии. И.П.Павлов создал учение о трофической функции нервной системы, выполнил фундаментальные эксперименты по нервной регуляции деятельности органов пищеварения, широко ввел в физиологию хронический эксперимент, обосновал синтетическое направление в физиологии и медицине. Работами в области физиологии нервной системы и высшей нервной деятельности И.П.Павлов развил и расширил рефлекторную теорию, открыл условный рефлекс, разработал правила выработки условных рефлексов, сделал условный рефлекс объективным методом изучения высшей нервной деятельности, создал учение о высшей нервной деятельности, учение о первой и второй сигнальных системах. Работы И.П.Павлова в течение многих лет являлись теоретической основой психиатрии, широко использовались мировой медициной, сохраняют значение и в настоящее время.

Ученик Павлова П.К.Анохин создал и развил учение о функциональных системах и саморегуляции функций.

Морфологическим субстратом рефлекса является рефлекторная дуга. Ее звенья:

1. Афферентное (рецепторы и афферентный нейрон).

2. Центральное (вставочные нейроны и синапсы).

3. Эфферентное (эффекторный нейрон и эффектор).

Простейшая (моносинаптическая) рефлекторная дуга имеет два нейрона: афферентный и эфферентный и один синапс. Рефлекторные дуги большинства рефлексов полисинаптические.

Область тела, раздражение которой вызывает определенный рефлекс, называетсярецептивным полем рефлекса (рефлексогенной зоной). Нервный центр – совокупность нейронов, необходимых для осуществления определенного рефлекса или регуляции той или иной функции. Время от начала раздражения рецептора до появления ответной реакции называется латентным периодомрефлекса. Более медленное проведение возбуждения по рефлекторной дуге, чем по нерву, связано с явлением синаптической задержки, необходимой для:

1) выделения медиатора нервным окончанием в ответ на импульс;

2) диффузии медиатора через синаптическую щель к постсинаптической мембране;

3) возникновения возбуждающего постсинаптического потенциала. Вместе с формированием пикового потенциала на мембране нейрона это время составляет 1,5 – 2,0 мс. Время, необходимое для проведения возбуждения по центральной части рефлекторной дуги (с аффекторных нейронов на эффекторные), зависит от количества вставочных нейронов и называется центральным временем рефлекса.

Классификация рефлексов

По биологическому значению: пищевые, половые, оборонительные, локомоторные, позно-тонические, ориентировочные.

В зависимости от расположения рецепторов: экстрарецептивные, интеррецептивные и проприорецептивные.

В зависимости от того, какие отделы мозга необходимы для осуществления рефлекса: спинальные, бульбарные, мезенцефальные, кортикальные.

В зависимости от отдела нервной системы, который реализует ответ: соматические или вегетативные.

По характеру ответной реакции: моторные, секреторные, сосудодвигательные. Моторные рефлексы по длительности ответной реакции разделяются на фазические и тонические.

По приспособительному значению рефлексы делятся на безусловные и условные.

Принципы рефлекторной теории И.П.Павлова.

Основными положениями рефлекторной теории И.П.Павлова являются:

1. Принцип детерминизма (причинности: всякое действие организма причинно обусловлено).

2. Принцип анализа и синтеза: любое событие, воздействие, изменение в организме сначала анализируется качественно, количественно, по биологической значимости, а затем, в зависимости от результата анализа, синтезируется ответная реакция.

3. Принцип структурности: все физиологические процессы протекают в определенных и неповреждённых нервных структурах.

Функциональные особенности нейрона.

Нейрон является структурной единицей нервной системы. В нейроне различаются сома (тело), дендриты и аксон. Структурно-функциональной единицей нервной системы являются нейрон, глиальная клетка, питающие кровеносные сосуды.

Функции нейрона

Нейрон обладает общими свойствами, характерными для возбудимых тканей: раздражимостью, возбудимостью, проводимостью, лабильностью. Нейрон способен генерировать, передавать, воспринимать действие потенциала, интегрировать воздействия с формированием ответа.

Физиологическое понятие о нервном центре.

Роль ЦНС в регуляции и координации функций организма. Трофическая роль ЦНС.

Интегративная деятельность ЦНС заключается в объединении и соподчинении всех функциональных элементов организма в целостную систему, обладающую определенной направленностью действия. Интеграция организована на различных уровнях ЦНС.

Первым уровнем интеграции является нейрон, клеточная мембрана которого интегрирует синаптические влияния. Интеграция на уровне нейрона осуществляется взаимодействием возбуждающих (ВПСП) и тормозных (ТПСП) постсинаптических потенциалов, которые генерируются при активации синаптических входов нейрона.

Вторым уровнем интеграции являются элементарные нервные сети. В нейронных сетях происходит дивергенция, иррадиация, конвергенция, суммация, реверберация, окклюзия и облегчение распространения возбуждения.

Третий уровень координации осуществляется в процессе деятельности нервных центров и их взаимодействии. Нервные центры формируются объединением нескольких локальных сетей и представляют собой комплекс элементов, способных осуществить определенный рефлекс или поведенческий акт.

В свою очередь, нервные центры различных отделов мозга объединяются враспределенные системы, которые координируют деятельность организма в целом. Эти системы представляют собой следующий, более высокий уровень интеграции в ЦНС.

Координирующая функция ЦНС выражается не только в усилении и распространении процессов возбуждения, но и в ослаблении излишней функциональной активности нейронов за счет их торможения.

Основные физиологические свойства нервных центров

Возбуждающие синапсы образуют в своих окончаниях медиатор, который вызывает развитие возбуждающего постсинаптического потенциала (ВПСП) на постсинаптической мембране. К возбуждающим медиаторам относятся: моноамины (ацетилхолин, дофамин, норадреналин, серотонин, гистамин), АТФ, аминокислоты (глутаминовая, аспарагиновая), нейропептиды (вещество Р, метэнкефалин, лейэнкефалин, эндорфин, нейротензин, АКТГ, ангиотензин, окситоцин, вазопрессин, вазоактивный кишечный пептид, соматостатин, тиролиберин, бомбезин, холецистокининоподобный пептид, карнозин).

2. В продолговатом мозге располагаются волокна, несущие импульсы от головного мозга к периферии и от периферии в головной мозг, волокна, несущие импульсы к мозжечку и от мозжечка, клетки и волокна ретикулярной формации. К собственному аппарату продолговатого мозга относятся ядра и корешки каудальной группы черепно-мозговых нервов, вставочные невроны между различными элементами продолговатого мозга. В П. м. заложены ядра языко-глоточного, блуждающего, добавочного и подъязычного нервов. Двигательные ядра этих нервов представляют собой двигательные центры отдельных мышечных групп головы и шеи, а также являются частью дуги простых рефлексов.

Благодаря вставочным невронам продолговатый мозг служит также местом образования сложных сочетанных движений, автоматических актов дыхания, глотания, жевания, кашля, рвоты. Зависимость дыхания от функции П. м. известна давно, однако достаточно достоверные сведения о локализации дыхательного центра были получены только после введения в экспериментальную практику игольчатых электродов. Путем погружения таких электродов в П. м. на различную глубину было установлено, что при раздражении ретикулярной формации дорсально от олив грудная клетка и диафрагма остаются в состоянии максимального вдоха, а дальнейшее раздражение этой области продолговатого мозга ведет к гибели животного; таким образом, ее можно рассматривать как инспираторный центр. Раздражение области, расположенной еще более дорсально, вызывает экспирационные движения. Следовательно, автоматические дыхательные движения зависят от указанных областей ретикулярной формации П. м. В нормальных условиях эти центры возбуждаются при определенном содержании CO2 в крови; некоторую роль играют и афферентные возбуждения, притекающие через блуждающий нерв.

В ретикулярной формации продолговатый мозг расположен также вазомоторный центр, точная локализация которого не установлена. Этот центр регулирует вазомоторные рефлексы, механизм каротидного синуса и в свою очередь находится под регулирующим влиянием центров межуточного мозга. В ретикулярной формации П. м. замыкаются круги рефлексов рвоты и кашля. Раздражения в области tractus solitarius вызывают рвоту, а разрушение этой области ведет к выпадению чувствительности к апоморфину. В ретикулярной формации продолговатого мозга располагаются также сложные центры, регулирующие мышечный тонус. Исследования показали, что определенные области П. м. влияют на мотоневроны спинного мозга. Эти бульбарные центры в свою очередь находятся под воздействием вышележащих областей мозга. В глубине продолговатого мозга в вентро-латеральной части его ретикулярной формации была выделена область, раздражение которой ведет к торможению спинальных рефлексов, а также двигательных импульсов, идущих от коры мозга. Латерально и несколько дорсально расположена область, раздражение которой ведет к облегчению и усилению спинальных рефлексов, а также делает выраженными подпороговые корковые импульсы, идущие к спинному мозгу.

Клод Бернар своим опытом, получившим название «сахарного укола» в П. м., положил начало многочисленным исследованиям нервной регуляции углеводного обмена. Установлено наличие двух областей - передней, парасимпатической, влияющей через блуждающий нерв на поджелудочную железу, и задней, симпатической, пути которой направляются к надпочечнику. Однако до настоящего времени не выяснено, повреждаются ли при «сахарном уколе» определенные клетки, центры или только пути, идущие из вышележащих отделов головного мозга.

В покрышке верхней части продолговатого мозга располагаются крупные клетки, подвергающиеся ретроградной атрофии при разрушении подъязычных и подчелюстных желез и, следовательно, являющихся клетками, которые влияют на отделение слюны этими железами. Второй центр для околоушных желез находится вблизи nucl. ambiguus. Многочисленные чувствительные импульсы, которые вызывают отделение слюны, проходят через тройничный нерв.

Продолговатый мозг- жизненно важный отдел ЦНС, представляющий собой продолжение спинного мозга. Здесь расположены центры регуляции дыхания (центры вдоха и выдоха), сердечно-сосудистой деятельности, а также центры пищеварительных (слюноотделения, отделения желудочного и поджелудочного сока, жевания, сосания, глотания и др.) и защитных рефлексов (чихания, кашля, рвоты и др.). Повреждение продолговатого мозга приводит к мгновенной смерти в результате прекращения дыхания и остановки сердца.

Проводниковая функция продолговатого мозга заключается в передаче импульсов от спинного мозга в головной и в обратном направлении.

Билет 7

1. Нервный центр – это совокупность нервных клеток, регулирующих определенную функцию организма. Эти нервные клетки могут быть расположены компактно в пределах одной анатомической структуры или представлять собой группы нейронов, участвующих в регуляции одной функции, но расположенных во многих отделах ЦНС.

Нейронные сети – система соединённых между собой нейронов мозга животных, человека. Это более широкое понятие, т.к. помимо последовательных цепей сюда включаются параллельные цепи, а также связи между последовательными и параллельными цепями. Нейронные сети – это структуры, выполняющие сложные задачи, например, сенсорные сети выполняют задачу по обработке информации.

Свойства нервных центров во многом определяются структурой и функцией синапсов тех нейронов, которые входят в состав данного нервного центра.

Свойства нервных центров:

1. Одностороннее проведение возбуждения: обусловлено особенностями расположения и характером функционирования синапсов в нервных центрах.

2. Замедление (задержка) распространения возбуждения: обусловлено наличием множества синапсов на пути следования сигнала – может составлять от 0,5 до 2-4 мс в зависимости от количества синапсов, участвующих в работе данного участка нервной цепи.

3. Иррадиация возбуждения – распространение возбуждения от активной клетки на соседние клетки и центры – обусловлено наличием множества ветвлений аксонов.

4. Суммация возбуждений (или торможений): временная и пространственная суммация сигналов, каждый из которых может быть ниже пороговых значений, но в результате суммации может привести к возникновению ПД. Временная суммация обусловлена тем, что ВПСП от предыдущего импульса еще продолжается, когда приходит следующий импульс. Многие нейронные процессы имеют ритмический характер и таким образом могут суммироваться, давая начало надпорогому возбуждению в нейронных цепях. Пространственная суммация заключается в том, что раздельная стимуляция каждого из двух аксонов вызывает образование подпорогового ВПСП, тогда как при при одновременной стимуляции обоих аксонов возникает ПД, обусловленный конвергенцией их влияний. Чаще всего наблюдается пространственно-временная суммация, когда на центральном нейроне сходятся импульсы, поступающие от разных нейронов в достаточно близкие микроинтервалы времени, в результате чего их воздействия суммируются.

5. Тонус нервных центров – наличие постоянного уровня возбуждения в части нейронов нервного центра. Тонус (фоновая активность) объясняется следующими причинами:

а) спонтанной активностью нейронов ЦНС;

б) гуморальными влияниями биологически активных веществ, циркулирующих в крови и влияющих на активность нейронов;

в) импульсацией от различных рефлексогенных зон;

г) суммацией миниатюрных потенциалов, возникающих в результате выделения квантов медиатора из аксона;

д) циркуляцией возбуждения в ЦНС.

6. Трансформация ритма возбуждения – это изменение числа импульсов, возникающих в нейронах центра на выходе относительно числа импульсов, поступающих на вход данного центра. Уменьшение может быть вследствие уменьшения возбудимости за счет процессов пре- и постсинаптического торможения. При большом потоке афферентных влияний, когда уже все нейроны нервного центра возбуждены, дальнейшее увеличение афферентных входов не приводит к увеличению числа возбужденных нейронов.

7. Последействие (например, длительное циркулирование импульсов по «нейронной ловушке»), или «облегчение» проведения. Следовые процессы имеют важное значение в понимании механизмов памяти. Непродолжительное последействие до 1 часа связано с циркуляцией импульсов в нейронных цепях и обеспечивает краткосрочную память. Следовые процессы в спинном мозге длятся несколько секунд или минут, в подкорковых центрах – десятки минут, часы, дни, в КБП – до нескольких десятков лет.

8. Утомляемость нервных центров – наблюдается при частых повторных раздражениях и связана с истощением запасов нейромедиаторов в пресинаптических окончаниях, снижением чувствительности рецепторов.

9. Пластичность (приспособляемость, смещение функций) – способность нервного центра к функциональным перестройкам. Например, способность осуществлять функцию при повреждении части нейронов за счет того, что оставшиеся нейроны замещают (компенсируют) функцию погибших. Другим проявлением пластичности является синаптическое облегчение – улучшение проведения в синапсах после короткого раздражения афферентных путей. Облегчение достигает максимума, когда импульсы поступают с интервалом в несколько миллисекунд. Главная причина этого облегчения, по-видимому, заключается в накоплении ионов кальция в пресинаптическом нервном окончании, когда ионный насос не успевает его выводить. Соответственно увеличивается высвобождение медиаторов, ускоряется их синтез, увеличивается активность рецепторов. Следующим проявлением пластичности является образование временных связей, которые обеспечивают образование условных рефлексов.

10. Высокая чувствительность к действию различных фармакологических веществ.

2. Средний мозг играет важную роль в регуляции мышечного тонуса и в осуществлении установочных и выпрямительных рефлексов, благодаря которым возможны стояние и ходьба.

Роль среднего мозга в регуляции мышечного тонуса лучше всего наблюдать на кошке, у которой сделан поперечный разрез между продолговатым и средним мозгом. У такой кошки резко повышается тонус, мышц, особенно разгибателей. Голова запрокидывается назад, резко выпрямляются лапы. Мышцы настолько сильно сокращены, что попытка согнуть конечность заканчивается неудачей - она сейчас же распрямляется. Животное, поставленное на вытянутые, как палки, лапы, может стоять. Такое состояние называется децеребрационной ригидностью.

Если разрез сделать выше среднего мозга,

то децеребрационная ригидность не возникает. Примерно через 2 часа такая кошка делает усилие подняться. Сначала она поднимает голову, затем туловище, потом встает на лапы и может начать ходить. Следовательно, нервные аппараты регуляции мышечного тонуса и функции стояния и ходьбы находятся в среднем мозге.

Явления децеребрационной ригидности объясняют тем, что перерезкой отделяются от продолговатого и спинного мозга красные ядра и ретикулярная формация. Красные ядра не имеют непосредственной связи с рецепторами и эффекторами, но они связаны со всеми отделами центральной нервной системы. К ним подходят нервные волокна от мозжечка, базальных ядер, коры полушарий большого мозга. От красных ядер начинается нисходящий руброспинальный тракт, по которому передаются импульсы к двигательным нейронам спинного мозга. Его называют экстрапирамидным трактом. Чувствительные ядра среднего мозга выполняют ряд важнейших рефлекторных функций. Ядра, находящиеся в верхних холмиках, являются первичными зрительными центрами. Они получают импульсы от сетчатки глаза и участвуют в ориентировочном рефлексе, т. е. повороте головы к свету. При этом происходит изменение ширины зрачка и кривизны хрусталика (аккомодация), способствующая ясному видению предмета.

Ядра нижних холмиков являются первичными слуховыми центрами. Они участвуют в ориентировочном рефлексе на звук - поворот головы в сторону звука. Внезапные звуковые и световые раздражения вызывают сложную реакцию настораживания, мобилизующую животное на быструю ответную реакцию.

Билет 8

1. Исходя из физиологических представлений, нервный «центр» может располагаться на разных уровнях ЦНС и участвовать в регуляции какой-либо фиpиологической функции (дыхание, пищеварение и т.д.) или в совершении какого-либо рефлекса.

К функциональным свойствам рефлекторных центров относятся: возбуждения или торможения в центральной нервной системе">иррадиация возбуждения; конвергенция и дивергенция; суммирование; синаптическое облегчение и окклюзия; трансформация ритма, реверберация возбуждения; тоническое состояние центров, их быстрая утомляемость, большая чувствительность к недостатку кислорода и к действию некоторых ядов.

Иррадиация возбуждения

Активное распространение возбуждения в ЦНС, особенно при сильном и длительном раздражении, получило название иррадиации. Возможность иррадиации в ЦНС обусловлена наличием в ней многочисленных ответвлений отростков (аксонов, дендритов) нервных клеток и цепей интернейронов, которые соединяют между собой различные нервные центры (благодаря этому возбуждение распространяется определенными путями и с определенной последовательностью). Важную роль в иррадиации возбуждения в структурах мозга играет ретикулярная формация.

Усиление раздражения или повышение возбудимости ЦНС сопровождается усилением иррадиации возбуждения в ней. Тормозные нейроны и синапсы препятствуют иррадиации возбуждения или ограничивают ее. При введении стрихнина, блокирующего постсинаптическое торможение, возникает сильное возбуждение ЦНС, которое сопровождается судорогами всех скелетных мышц. Иррадиация может стать патологической в связи с возникновением сильного очага возбуждения и с изменением свойств нервной ткани, усиливает распространение возбуждения. Это бывает при эпилепсии.

Конвергенция возбуждения

На каждом из нейронов ЦНС конвергирует (сходятся) различные афферентные волокна. Таких афферентных входов для большинства нейронов много десятков и даже тысяч. Так, на мотонейронах заканчиваются в среднем 6000 коллатералей аксонов, которые поступают от периферических рецепторов и различных структур мозга, образуя возбуждающие и тормозные синапсы. Это такое универсальное явление, можно говорить о принципе конвергенции в нейронах и их связях. Благодаря этому явлению в один и тот же нейрон одновременно поступают многочисленные и разнообразные потоки возбуждений, которые затем подлежат сложной обработке и перекодируются и формируются в единое возбуждение - аксонноу, что идет к следующему звену нервной сетки. Конвергенция возбуждения на нейроне является универсальным фактором его интегративной деятельности.

Различают мультисенсорную, мультибиологическую и сенсорно-биологическую формы конвергенции. В первом случае на нейрон поступают сигналы различной сенсорной модальности (зрительные, слуховые, болевые и др.), во втором - потоки возбуждений различной биологической модальности (пищевые, половые и др.), в третьем - сигнализация (зрительная, пищевая) и другие.

Дивергенция возбуждения

Дивергенция (расхождение) возбуждения - способность одиночного нейрона устанавливать в многочисленных синаптических связях с различными нервными клетками. Например, афферентные волокна периферических рецепторов, входя в спинной мозг в составе задних корешков, дальше разветвляются на многочисленные коллатерали, которые идут к спинальным нейронам. Благодаря дивергенции одна и та же нервная клетка может принимать участие в организации различных реакций и контролировать большое количество нейронов. Одновременно каждый нейрон может обеспечивать широкое перераспределение импульсов, что ведет к иррадиации возбуждения. Конвергенция и дивергенция взаимно связаны.

Реверберация возбуждения

Циркуляция возбуждения замкнутыми нейронами и их цепями в ЦНС называется реверберацией. Возбуждение одного из нейронов, входящих в эту цепь, передается на другой (или другие), а коллатералям аксонов снова возвращается к нервной клетки и т.д.

Реверберация возбуждения наблюдается в так называемом рефлекторном последействии, когда рефлекторный акт заканчивается не сразу после прекращения, а через некоторый (иногда длительный) период, а также играет определенную роль в механизмах кратковременной (оперативной) памяти. Сюда же относится корково-подкорковая реверберация, которая играет важную роль в высшей нервной деятельности (поведении) человека и животных.

Тонус нервных центров

Многие центры, т.е. нейронов, которые их составляют, постоянно генерируют нервные импульсы. Они поступают от эффекторов, что свидетельствует о существовании некоторого постоянного тонического возбуждения, т.е. тонуса нервных центров.

Указанное свойство нервного центра проще рассмотреть на примере объединения мотонейронов (мотонейронного пула).

При раздражении афферентного мышечного нерва надпороговым одиночным стимулом мотонейрона, иннервирующего соответствующие мышцы, возникает моносинаптический ВПСП. В зависимости от числа синаптических контактов и уровня поляризации часть мотонейронов деполяризуется до порогового уровня, и в них происходит импульсивный разряд. Эти мотонейроны составляют так называемую зону разряда. Вторая (обычно значительно большая) часть мотонейронов этого пула не достигает критического уровня деполяризации и не разряжается, но на время развития ВПСП, как правило, увеличивается возбудимость этих «молчаливых» нейронов. Эти нейроны составляют так называемую подпороговую зону нервного центра.

Подпороговая зона увеличивается при усилении афферентного раздражения гораздо быстрее, чем зона разряда. Причем при любой интенсивности раздражения подпорогового возбуждения нейронов всегда больше, чем тех, что разряжаются, т.е. соответствуют импульсной активности (соотношение примерно 80:20).

Как в свете этих данных представить себе тонус нервных центров? Очевидно, что тонус центров определяется соотношением нейронов, которые «молчат», и нейронов, которые разряжаются, т.е. нейронов подпороговой зоны и зоны разряда. Если схематично изобразить нервный центр, который состоит из 50 нейронов, то тонус такого центра намного выше, когда импульсная активность наблюдается у 25 нейронах из 50, чем тогда, когда раздражаются только 10 клеток.

Можно допустить, что чем выше тоническая активность центра, т.е. чем больше нейронов генерирует потенциалы действия в данный момент, тем меньше возможности центра развивать рефлекторную деятельность в ответ на дополнительное раздражение. Центр слева находится в состоянии высокого тонуса, но у него только половина нейронов может «включиться» в ответ на дополнительные стимулы. Центр справа имеет низкую тоническую активность, но у него больше резервов для «включения» в рефлекторные реакции. Действительно, центры с постоянным тонусом (например, ядро блуждающего нерва) имеют тем меньшую рефлекторную возбудимость, чем выше их тоническая активность.

Нервные центры легко утомляются. Это проявляется постепенным снижением и даже полным прекращением импульсных разрядов при длительном раздражении афферентных волокон. В то же время раздражение эфферентного нерва (например, мышечного) еще продолжает вызывать сокращение мышцы. Если учесть, что нерв практически не устает, то усталость, которая развивается, прежде локализуется в нервном центре. Усталость центров связана главным образом с резким нарушением синаптической передачи (уменьшение запасов и синтеза медиатора, снижение чувствительности к медиатору постсинаптической мембраны, уменьшение энергетических резервов нервной клетки и др.).

Чувствительность нервных центров к гипоксии. Функции нервных центров зависят от снабжения их кислородом. Нуждаясь в большом количестве кислорода (мозг человека потребляет примерно 40-50 мл кислорода в 1 мин, т.е. 1/6-1/8 часть кислорода, необходимого организму в состоянии покоя), нервные клетки, особенно высших отделов ЦНС, очень чувствительны к его недостатку (гипоксии). Полное или частичное прекращение кровообращения мозга ведет к тяжелым нарушениям его деятельности и к гибели нервных клеток. Даже кратковременное резкое падение кровяного давления в мозгу вызывает у человека немедленную потерю сознания. Клетки коры большого мозга подлежат необратимым изменениям и погибают уже через 5-6 мин после полного прекращения кровообращения, при температуре 37 ° С функции клеток ствола головного мозга и спинного мозга нарушаются соответственно через 15 и 30 мин.

Нервные клетки и синапсы обладают избирательной чувствительностью к некоторым ядам, в частности к стрихнину, морфину, алкоголю, наркотическим веществам (эфир, хлороформ, барбитураты) и другие, их изучением занимается нейрофармакология.

2. Помимо областей коры большого мозга, стимулирующих мышечные сокращения, для нормальной двигательной функции важны также две другие мозговые структуры: мозжечок и базальные ганглии. Однако ни одна из этих структур не может регулировать движения самостоятельно, они всегда функционируют в тесной связи с другими системами двигательного контроля. Мозжечок в основном играет роль в синхронизации двигательных функции и обеспечении быстрого плавного перехода от одного мышечного движения к следующему. Он также помогает регулировать интенсивность мышечных сокращений при изменениях мышечной нагрузки, а также обеспечивает необходимое текущее взаимодействие между группами мышц-агонистов и мышц-антагонистов. Базальные ганглии помогают планировать и осуществлять сложные двигательные программы, регулируя относительную интенсивность и направление отдельных движений, а также обеспечивая согласование множества последовательных и параллельных движений для выполнения специфических сложных двигательных задач. В наших следующих статьях будут изложены основные механизмы функции мозжечка и базальных ганглиев и рассмотрены общие мозговые механизмы, лежащие в основе сложной координации совокупной двигательной активности. Мозжечок, долго называли немой зоной головного мозга, в основном потому, что электрическое раздражение мозжечка не вызывает каких-либо осознанных ощущений и редко вызывает какую-либо мышечную активность. Удаление мозжечка, однако, ведет к резкому нарушению движений тела. Особенно важен мозжечок во время выполнения быстрых движений, например при беге, печатании на пишущей машинке, игре на пианино и даже при разговоре. Потеря этой области мозга может вызвать почти абсолютную дискоординацию этих движений, несмотря на то, что при этом не возникают параличи мышц. Почему же мозжечок так важен, если он не имеет возможности непосредственно вызывать мышечные сокращения? Ответ состоит в том, что мозжечок обеспечивает последовательность движений, а также контролирует и корректирует двигательную активность организма во время ее осуществления так, чтобы эта активность соответствовала управляющим сигналам двигательной коры и других отделов мозга. Мозжечок постоянно получает обновленную информацию о желательной последовательности сокращений от областей мозга, контролирующих движения. Он также получает постоянную сенсорную информацию от периферических частей тела, сообщающую о последовательных изменениях состояния каждой части тела и ее положении, скорости движения, о силах, действующих на нее, и т.д. На основании сенсорной информации, полученной по механизму обратной связи с периферии, мозжечок имеет возможность сравнивать реальные движения с движениями, запланированными двигательной системой. Если между планом и реальностью соответствия нет, сразу же назад к двигательной системе передаются подсознательные корректирующие сигналы для того, чтобы увеличить или уменьшить уровни активации определенных мышц. Кроме того, мозжечок помогает коре большого мозга планировать следующее последовательное движение заранее, за долю секунды до его начала, когда еще выполняется текущее движение, что способствует плавному переходу от одного движения к следующему. Мозжечок также умеет «учиться» на своих ошибках, т.е. если движение не выполняется точно так, как задумано, мозжечковый контур обучается усиливать или ослаблять это движение в следующий раз. Такая возможность связана с изменениями возбудимости соответствующих нейронов мозжечка, что позволяет последующим мышечным сокращениям лучше соответствовать запланированным движениям.

Мозжечок, или малый мозг, представляет собой надсегментарную структуру, расположенную над продолговатым мозгом и мостом, позади больших полушарий мозга. Мозжечок состоит из нескольких частей, различных по происхождению в эволюции позвоночных животных.

У человека мозжечок состоит из двух полушарий, находящихся по бокам от червя. К филогенетически более древней части мозжечка млекопитающих относят переднюю долю и флоккулонодулярную часть задней доли. Эти структуры мозжечка преимущественно связаны со спинным мозгом и вестибулярным аппаратом, тогда как полушария в основном получают информацию от мышечных и суставных рецепторов, а также от зрительного и слухового анализаторов. На рис. 5.16 представлена схема мозжечка млекопитающего (см. приложение 6), отражающая плотность вестибулярных, проприоцептивных (от мышц, сухожилий и суставов) и корковых афферентных проекций в различные зоны мозжечка. Согласно этой классификации кора мозжечка делится на три области:

1) архицеребеллум (старый мозжечок) – флоккулонодулярная доля (долька X); в ней оканчиваются преимущественно вестибулярные афференты и волокна от вестибулярных ядер; вестибулярные волокна проецируются также частично в язычок (lingula – долька I) и каудальную часть втулочки (uvula – долька IX), которые обычно относят также к архицеребеллуму;

2) палеоцеребеллум (древний мозжечок) включает переднюю долю (дольки II–V), простую дольку (долька VI) и заднюю часть корпуса мозжечка (дольки VIII–IX); палеоцеребеллум тесно связан со спинным мозгом, а также имеет двусторонние связи с сенсомоторной областью коры больших полушарий;

3) неоцеребеллум (новый мозжечок) включает среднюю часть корпуса мозжечка (долька VII и частично дольки VI и VIII), которая получает информацию от коры больших полушарий, а также от слуховых и зрительных рецепторов. Обратите внимание, что основная часть полушарий мозжечка принадлежит новому мозжечку, который лучше всего развит у человека.

В толще мозжечка находятся три пары ядер: зубчатое, расположенное латерально; ядро шатра – медиально; пробковидное и округлое ядра – между ними.

Билет 9

Принцип сопряженного торможения или реципрокности

Примером реципрокности может быть регуляция спинным мозгом противоположных по функциональному назначению мышц конечностей. Так, при возбуждении мотонейронов, иннервирующих мышцы сгибатели правой ноги, тормозятся мотонейроны мышц разгибателей этой ноги и возбуждаются мото­нейроны мышц разгибателей левой ноги. Формирующийся цепной характер рефлексов вслед за этим вызывает возбуждение мотоней­ронов разгибателей правой ноги и реципрокно - торможение мо­тонейронов сгибателей правой ноги и возбуждение мотонейронои сгибателей левой ноги. Таким образом, реципрокные взаимоотноше­ния между указанными рефлексами обеспечивают цепной шагатель­ный рефлекс. Реципрокные взаимоотношения имеют место и между рефлексами вдоха и выдоха, когда возбуждение центра вдоха тор­мозит центр выдоха и наоборот, что обеспечивает ритмичную смену фаз в процессе внешнего дыхания.

Принцип доминанты

Принцип доминанты был открыт А.А.Ухтомским. Доминантой на­зывают общий принцип деятельности нервной системы, проявля­ющийся в виде господствующей в течение определенного времени системы рефлексов, реализуемых доминирующими центрами, кото­рые подчиняют себе или подавляют деятельность других нервных центров и рефлексов. Нейроны доминирующих центров приобретают более низкий уровень критической деполяризации мембран, т.е. становятся более возбудимыми, и способны эффективнее осущест­влять пространственную и временную суммацию нервных импульсов. Синаптическое проведение к этим нейронам облегчено и поэтому они могут возбуждаться и за счет «посторонних» импульсов от не имеющих прямых связей с доминирующими центрами информаци­онных каналов. Вследствие суммации многочисленных ВПСП воз­буждение нейронов как и число возбужденных клеток в доминиру­ющем центре нарастает и осуществляемые им рефлекторные реак­ции легко реализуются. Преобладание рефлексов доминирующего центра над другими рефлекторными актами становится особенно выраженным, поскольку через систему вставочных нейронов доми­нирующий центр сопряженно тормозит другие центры и текущие рефлексы. Принцип доминанты позволяет концентрировать внима­ние и строить поведение для достижения определенной намеченной цели.

Физиология - наука, которая дает нам представление о человеческом организме и протекающих в нем процессах. Одним из таких процессов является торможение ЦНС. Оно представляет собой процесс, который порождается возбуждением и выражается в предупреждении появления другого возбуждения. Это способствует обеспечению нормальной деятельности всех органов и защищает нервную систему от перевозбуждения. Сегодня известно множество видов торможения, которые играют важную роль в работе организма. Среди них выделяют и реципрокное торможение(сочетанное), которое образуется в определенных тормозных клетках.

Виды центрального первичного торможения

Первичное торможение наблюдается в определенных клетках. Они находятся возле тормозных нейронов, которые производят нейротрансмиттеры. В ЦНС бывают такие виды торможения первичного: возвратное, реципрокное, латеральное торможение. Рассмотрим, как работает каждый из них:

  1. Латеральное торможение характеризуется затормаживанием нейронов тормозной клеткой, что находится около них. Часто этот процесс наблюдается между такими нейронами сетчатки глаз, как биполярные и ганглиозные. Это способствует созданию условий для отчетливого видения.
  2. Реципрокное - характеризуется взаимной реакцией, когда одни нервные клетки производят торможение других через вставочный нейрон.
  3. Возвратное - обуславливается торможением нейроном клетки, что тормозит этот же нейрон.
  4. Возвратное облегчение характеризуется понижением реакции иными тормозными клетками, при котором наблюдается уничтожение этого процесса.

В простых нейронах ЦНС происходит после возбуждения притормаживание, появляются следы гиперполяризации. Таким образом, реципрокное и возвратное торможение в происходят благодаря включению в цепь спинномозгового рефлекса особого тормозного нейрона, который именуется клеткой Реншоу.

Описание

В ЦНС постоянно работают два процесса - торможение и возбуждение. Торможение при этом направлено на прекращение или ослабление определенной деятельности в организме. Оно образуется при встрече двух возбуждений - тормозящего и тормозного. Реципрокное торможение представляет собой то, при котором возбуждение одних нервных клеток тормозит другие клетки через промежуточный нейрон, что имеет связь только с другими нейронами.

Экспериментальное открытие

Реципрокное торможение и возбуждение в ЦНС были выявлены и изучены Веденским Н.Е. Он проводил эксперимент на лягушке. На кожном покрове задней ее конечности осуществлялось возбуждение, которое вызывало сгиб и выпрямление конечности. Таким образом, согласованность этих двух механизмов представляет собой общую особенность всей нервной системы и наблюдается в головном и спинном мозге. Было установлено в ходе экспериментов, что совершение каждого действия движения основано на взаимосвязи торможения и возбуждения на одних и тех же нервных клетках ЦНС. Введенский Н.В говорил о том, что при возникновении возбуждения в какой-либо точке ЦНС вокруг этого очага появляется индукция.

Сочетанное торможение по Ч. Шеррингтону

Шеррингтон Ч. утверждает, что обеспечении полной согласованности конечностей и мышц. Этот процесс дает возможность конечностям сгибаться и выпрямляться. Когда человек сводит конечность, в колене образуется возбуждение, что переходит в спинной мозг на центр сгибательных мышц. Одновременно в центре разгибательных мышц появляется реакция замедления. Так происходит и наоборот. Запускается это явление при двигательных актах, имеющих большую сложность (прыжок, бег, ходьба). Когда человек идет, он поочередно сгибает и выпрямляет ноги. При согнутой правой ноге в центре сустава появляется возбуждение, в ином направлении происходит процесс торможения. Чем сложнее двигательные акты, тем большее число нейронов, которые несут ответственность за определенные мышечные группы, находятся в реципрокных отношениях. Таким образом, возникает благодаря работе вставочных нейронов спинного мозга, что отвечают за процесс торможения. Координированные отношения нейронов непостоянны. Изменчивость отношений между двигательными центрами дает возможность человеку делать непростые движения, например, играть на музыкальных инструментах, танцевать и прочее.

Реципрокное торможение: схема

Если рассматривать схематически этот механизм, то он имеет следующий вид: раздражитель, который поступает от афферентной части через обычный (вставочный) нейрон, вызывает возбуждение в нервной клетке. Нервная клетка приводит в движение мышцы-сгибатели, а через клетку Реншоу тормозит нейрон, что заставляет двигаться мышцы-разгибатели. Таким вот образом протекает координированное движение конечности.

Разгибание конечности происходит наоборот. Так, обеспечивает образование реципрокных отношений между центрами нервов определенных мышц благодаря клеткам Реншоу. Такое торможение является практичным с точки зрения физиологии, поскольку делает легким движение колена без какого-либо вспомогательного контролирования (произвольного или непроизвольного). Если бы этого механизма не было, то появилась бы механическая борьба мышц человека, судороги, а не скоординированные акты движения.

Суть сочетанного торможения

Реципрокное торможение позволяет организму делать произвольные движения конечностями: как легкие, так и достаточно сложные. Суть этого механизма заключается в том, что нервные центры противоположного действия находятся одновременно в противоположном состоянии. Например, при возбуждении центра вдоха центр выдоха заторможен. Если сосудосуживающий центр находится в возбужденном состоянии, то сосудорасширяющий в это время пребывает в заторможенном. Таким образом, сопряженное торможение центров рефлексов противоположного действия обеспечивает координацию движений и осуществляется с помощью специальных тормозных нервных клеток. Возникает согласованный сгибательный рефлекс.

Торможение по Вольпе

Вольпе в 1950 году было сформулировано предположение о том, что тревога представляет собой стереотип поведения, который закреплен в результате реакций на ситуации, которые ее вызывают. Связь между стимулом и реакцией может быть ослаблена в случае действия фактора, который тормозит тревогу, например, расслабление мышц. Вольпе назвал этот процесс «». Он лежит сегодня в основе метода поведенческой психотерапии - систематической десенситизации. В ее ходе пациента вводят во множество представляемых ситуаций, одновременно вызывается мышечное расслабление при помощи транквилизаторов или гипноза, которое снижает уровень тревоги. По мере закрепления отсутствия тревоги в легких ситуациях, пациент переходит к сложным ситуациям. В результате терапии человек приобретает навыки самостоятельно контролировать тревожные ситуации в реальности при помощи техники мышечного расслабления, которой он овладел.

Таким образом, реципрокное торможение было открыто Вольпе и широко применяется сегодня в психотерапии. Суть метода заключается в том, что происходит уменьшение силы определенной реакции под воздействием иной, которая была вызвана одновременно. Этот принцип находится в основе конт-обуславливания. Сочетанное торможение обуславливается тем, что реакция страха или тревоги затормаживается эмоциональной реакцией, которая возникает одновременно и является несовместимой со страхом. Если такое торможение происходит периодически, то условная связь между ситуацией и реакцией тревоги ослабевает.

Метод психотерапии Вольпе

Джозеф Вольпе обратил внимание на то, что привычкам свойственно угасать в случае развития новых привычек в одинаковой ситуации. Он использовал термин «реципрокное торможение» для описания ситуаций, где появление новых реакций приводит к угасанию ранее возникавших реакций. Так, при одновременном присутствии стимулов к появлению несовместимых реакций, развитие доминирующей реакции в определенной ситуации предполагает сопряженное торможение других. На основании этого он разработал метод лечения тревожности и страхов у людей. Этот способ предполагает нахождение тех реакций, что подходят для возникновения реципрокного торможения реакций страха.

Вольпе выделял следующие реакции, что несовместимы с тревогой, применение которых даст возможность изменить поведение человека: реакции ассертивные, сексуальные, релаксация и «облегчение тревоги», а также дыхательные, моторные, медикаментозно усиленные реакции и те, что вызваны беседой. На основании всего этого были разработаны различные техники и приемы в психотерапии при лечении тревожных пациентов.

Итоги

Таким образом, на сегодняшний день учеными объяснен рефлекторный механизм, который использует реципрокное торможение. Согласно этому механизму нервные клетки возбуждают тормозные нейроны, которые находятся в спинном мозге. Это все способствует координированному движению конечностей у человека. Человек имеет способность совершать различные сложные двигательные акты.

1. Координация активности в ЦНС. Торможение направляет возбуждение по определённым нервным путям к определённым нервным центрам. При этом происходит выключение тех нейронов, активность которых в данный момент не нужна. Т.е. торможение препятствует ненужному распростанению возбуждения (упорядочивает передачу импульсов).

2. Охранительная (защитная) функция. Торможение предохраняет нервные клетки от перевозбуждения и истощения при действии сверхсильных и сверхдлительных раздражителей.

Виды торможения:

а) Первичное (прямое) торможение. Связано с активацией тормозных синапсов.

б) Вторичное торможение. Возникает в клетке как следствие её возбуждения, т.е. вторично (торможение вслед за возбуждением).

Виды прямого торможения:

а) Постсинаптическое. Чаще всего развивается в тормозных аксосоматических синапсах. При этом выделяются тормозные медиаторы – ГАМК и глицин. Механизмом торможения является гиперполяризация мембраны постсинаптической клетки, т.е. возникновение ТПСП. В основном существует два способа гиперполяразации – вход ионов хлора и выход ионов калия. В первом случае отрицательные ионы заходят внутрь, во втором – положительные выходят наружу. Из состояния гиперполяризаци клетку возбудить сложнее. Тормозные нейроны встречаются во всех областях мозга. Например, в коре мозжечка – это клетки Пуркинье, Гольджи, корзинчатые нейроны. В спинном мозге – клетки Реншоу.

Типы постсинаптического торможения:

1. Поступательное

2. Обратное (антидромное) – осуществляется клетками Реншоу. Регуляция активности по принципу отрицательной обратной связи.

3. Латеральное (боковое). Вставочные тормозные нейроны блокируют боковые пути распространения возбуждения.

4. Реципрокное (сопряжённое). Торможение центров мышц-антагонистов.

5. Нисходящее. Регулирует тонус мыщц.

б) Пресинаптическое. Характерно для аксоаксонных синапсов. Аксон тормозного нейрона образует тормозной синапс на возбуждающем аксоне. Уменьшается количество выделяющегося медиатора, и уменьшается величина ВПСП. Отличие пресинаптического торможения от постсинаптического состоит в том, что здесь не регистрируется ТПСП, а происоходит уменьшение амплитуды ВПСП. Максимальный тормозной эффект достигается тогда, когда нервный импульс приходит на тормозное окончание на несколько миллисекунд раньше, чем на возбуждающее окончание.

Функциональное значение пресинаптического и постсинаптического торможения.

Постсинаптическое торможение уменьшает возбудимость клетки, делая её менее чувствительной ко всем возбуждающим входам.

Пресинаптическое торможение гораздо более специфично и направлено на определённый вход. Поэтому пресинаптическое торможение также называется фильтрационным.

Вторичное торможение возникает в результате сильного и длительного возбуждения (деполяризации) синаптической мембраны. Это может происходить…

Явление торможения в нервных центрах (или центрального торможения) было впервые открыто И. М. Сеченовым в 1862 г., обнаружившим возникновение торможения спинальных центров лягушки при раздражении структур головного мозга. Значение этого процесса было рассмотрено им в книге «Рефлексы головного мозга» (1863).

Опуская лапку лягушки в кислоту и одновременно раздражая некоторые участки головного мозга (например, накладывая кристаллик поваренной соли на область промежуточного мозга), И. М. Сеченов наблюдал резкую задержку и даже полное отсутствие «кислотного» рефлекса спинного мозга (отдергивание лапки). Отсюда он сделал заключение, что одни нервные центры могут существенно изменять рефлекторную деятельность в других центрах, в частности, вышележащие нервные центры могут тормозить деятельность нижележащих. Описанный опыт вошел в историю физиологии под названием сеченовское торможение.

Реципрокный (антагонистический) характер возбуждающих и тормозных влияний в ЦНС показан учеником И. М. Сеченова Н. Е. Введен-ким и подробно проанализирован английским нейрофизиологом Ч. Шеррингтоном. Важным шагом к выяснению природы центрального торможения оказалось выявление самостоятельного значения торможения для работы нервных центров. Торможение нельзя свести ни к утомлению нервных центров, ни к их перевозбуждению. Торможение самостоятельный нервный процесс, вызываемый возбуждением и проявляющийся в подавлении другого возбуждения.

Тормозные процессы – необходимый компонент в координации нервной деятельности.

Во-первых, процесс торможения ограничивает распространение возбуждения на соседние нервные центры, чем способствует его концентрации в необходимых участках нервной системы.

Во-вторых, возникая в одних нервных центрах параллельно с возбуждением других нервных центров, процесс торможения тем самым выключает деятельность ненужных в данный момент органов.

В-третьих, развитие торможения в нервных центрах предохраняет их от чрезмерного перенапряжения при работе, т.е. играет охранительную роль.

2. Постсинаптическое и пресинаптическое торможение

Процесс торможения, в отличие от возбуждения, не может распространяться по нервному волокну - это всегда местный процесс в области синаптических контактов. По месту возникновения различают пресинаптическое и постсинаптическое торможение. Особенно широкое распространение в ЦНС имеет постсинаптическое торможение.

Постсинаптическое торможение – это тормозные эффекты, возникающие в постсинаптической мембране. Чаше всего этот вид торможения

связан с наличием в ЦНС специальных тормозных нейронов. Они представляют собой особый тип вставочных нейронов, у которых окончания аксонов выделяют тормозной медиатор, в качестве которых могут быть гамма-аминомасляная кислота (ГАМ К), глицин и др.

Нервные импульсы, подходя к тормозным нейронам, вызывают в них такой же процесс возбуждения, как и в других нервных клетках. В ответ по аксону тормозной клетки распространяется обычный потенциал действия. Однако, в отличие от других нейронов, окончания аксона при этом выделяют не возбуждающий, а тормозной медиатор. В результате тор-

мозные клетки тормозят те нейроны, на которых оканчиваются их аксоны.

К специальным тормозным нейронам относятся клетки Рэншоу в спинном мозге, клетки Пуркинье мозжечка, корзинчатые клетки в промежуточном мозге и др. Большое значение, например, тормозные клетки имеют при регуляции деятельности мышц-антагонистов: приводя к расслаблению мышц-антагонистов, они облегчают тем самым одновременное сокращение мышцагонистов (рис. 7).

Рис. 7. Участие тормозной клетки в регуляции мышц- антагонистов: В и Т – возбуждающий и тормозной нейроны; (+) – возбуждение мотонейрона мышцы-сгибателя (МС), (-) – торможение мотонейрона мышцы-разгибателя (МР); Р – кожный рецептор

Клетки Рэншоу участвуют в регуляции уровня активности отдельных мотонейронов спинного мозга. При возбуждении мотонейрона импульсы поступают по его аксону к мышечным волокнам и одновременно по коллатералям аксона – к тормозной клетке Рэншоу. Аксоны последней «возвращаются» к этому же нейрону, вызывая его торможение. Чем больше возбуждающих импульсов посылает мотонейрон на периферию (а значит, и к тормозной клетке), тем сильнее это возвратное торможение (разновидность постсинаптического торможения). Такая замкнутая система действует как механизм саморегуляции нейрона, предохраняя его от чрезмерной активности.

Клетки Пуркинье мозжечка своими тормозными влияниями на клетки подкорковых ядер и стволовых структур участвуют в регуляции тонуса мышц.

Корзинчатые клетки в промежуточном мозге являются как бы воротами, которые пропускают или не пропускают импульсы, идущие в кору больших полушарий от различных областей тела.

Пресинаптическое торможение возникает еще в пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. В этом случае свойства постсинаптической мембраны не подвергаются каким бы то ни было изменениям.

Пресинаптическое торможение наиболее часто выявляется в структурах мозгового ствола и особенно спинного мозга. Как и постсинаптическое, осуществляется оно посредством специальных тормозных вставочных нейронов. Структурной основой пресинаптического торможения являются аксо-аксонные синапсы, т.е. окончание аксона тормозного нейрона образует синапс на окончании аксона возбуждающей нервной клетки (рис. 8).



Рис. 8. Схема организации синап- ов, участвующих в пресинаптическом торможении: 1 – нервная клетка, 2 – аксон возбуждающего нейрона, 3 – аксон тормозного нейрона

Импульсы в пресинаптической части аксона тормозного нейрона высвобождают медиатор, который вызывает чрезмерно сильную деполяризацию мембраны окончаний аксона возбуждающего нейрона (как предполагают, за счет увеличения проницаемости их мембраны для Cl -).


Считают, что указанная деполяризация вызывает уменьшение амплитуды ПД, приходящего в возбуждающее окончание, что в свою очередь уменьшает количество высвобождаемого им медиатора, вследствие чего амплитуда ВПСП падает. Таким образом блокируется передача возбуждения.

Этот вид торможения ограничивает поток афферентных импульсов к нервным центрам, выключая посторонние для основной деятельности влияния.

3. Явления иррадиации и концентрации. Другие принципы координационной деятельности ЦНС. Принцип доминанты

1. Конвергенция, или принцип общего конечного пути. Схождение различных путей проведения нервных импульсов к одной и той же нервной клетке носит название конвергенции.

2. Дивергенция. Способность нейрона устанавливать многочисленные синаптические связи с различными нервными клетками носит название дивергенции. Благодаря процессу дивергенции одна и та же нервная клетка может участвовать в различных нервных реакциях и контролировать большое число других нейронов, что приводит к иррадиации возбуждения.

3. Явления иррадиации и концентрации. При раздражении одного рецептора возбуждение может в принципе распространяться в ЦНС в любом направлении и на любую нервную клетку. Это происходит благодаря многочисленным взаимосвязям нейронов одной рефлекторной дуги с нейронами других рефлекторных дуг. Распространение процесса возбуждения на другие нервные центры называют явлением иррадиации.

Чем сильнее афферентное раздражение и чем выше возбудимость окружающих нейронов, тем больше нейронов охватывает процесс иррадиации. Процессы торможения ограничивают иррадиацию и способствуют концентрации возбуждения в исходном пункте ЦНС.

Процесс иррадиации играет важную положительную роль при формировании новых реакций организма (ориентировочных реакций, условных рефлексов). Чем больше активируется различных нервных центров, тем легче отобрать из их числа наиболее нужные для последующей деятельности центры. Благодаря иррадиации возбуждения между различными

нервными центрами возникают новые функциональные взаимосвязи - ус­ловные рефлексы. На этой основе возможно, например, формирование но­вых двигательных навыков.

Вместе с тем, иррадиация возбуждения может оказать отрицательное воздействие на состояние и поведение организма, нарушая тонкие взаимо­отношения между возбужденными и заторможенными нервными центрами и вызывая нарушения координации движений.

4. Принцип доминанты.

Исследуя особенности межцентральных отношений, А. А. Ухтом­ский обнаружил, что если в организме животного осуществляется сложная рефлекторная реакция, например, повторяющиеся акты глотания, то элек­трическое раздражение моторных центров не только перестает вызывать в этот момент движение конечностей, но и усиливает протекание начавшей­ся цепной реакции глотания, которая оказалась главенствующей.

Такой господствующий очаг возбуждения в ЦНС, определяющий текущую деятельность организма, А. А. Ухтомский (1923) обозначил термином доминанта.

Речь идет о том, что среди рефлекторных актов, которые могут быть выполнены в данный момент времени, имеются рефлексы, реализация ко­торых представляет наибольший интерес для организма, т.е. они в данный момент времени самые важные. Поэтому эти рефлексы реализуются, а другие - менее важные - тормозятся.

Центры, участвующие в реализации доминантных рефлексов, Ух­томский назвал доминантным очагом возбуждения. Этот «очаг» облада­ет рядом важных свойств:

■ он стойкий (его сложно затормозить);

■ этот очаг тормозит другие потенциальные доминантные очаги; Отчего же именно данный очаг является доминантным? Доминирующий очаг может возникнуть при повышенном уровне

возбудимости нервных клеток, который создается различными гумораль­ными и нервными влияниями. Т.е. это определяется состоянием организма, например, гормональным фоном. У голодного животного и человека до­минантными рефлексами являются пищевые.

Доминирующий очаг подавляет деятельность других центров, ока­зывая сопряженное торможение.

Объединение большого числа нейронов в одну доминантную си­стему происходит путем взаимного сонастраивания на общий темп актив­ности, т.е. путем усвоения ритма. Одни нервные клетки снижают свой бо лее высокий темп деятельности, а другие - повышают низкий темп до не­которого среднего, оптимального ритма. Доминанта может надолго сохра­няться в скрытом, следовом состоянии (потенциальная доминанта). При возобновлении прежнего состояния или прежней внешней ситуации доми­нанта может снова возникнуть (актуализация доминанты). Например, в предстартовом состоянии активизируются все те нервные центры, которые входили в рабочую систему во время предыдущих тренировок, и, соответ­ственно, усиливаются функции, связанные с работой. Мысленное выпол­нение физических упражнений или представление движений также вос­производит рабочую доминанту, что обеспечивает тренирующий эффект представления движений и является основой так называемой идеомотор-ной тренировки. При полном расслаблении (например, при аутогенной тре­нировке) спортсмены добиваются устранения рабочих доминант, что ускоряет процессы восстановления.

Как фактор поведения доминанта связана с высшей нервной дея­тельностью и психологией человека. Доминанта является физиологиче­ской основой акта внимания. При наличии доминанты многие влияния внешней среды остаются вне нашего внимания, но зато более интенсивно улавливаются и анализируются те, которые нас особенно интересуют. Та­ким образом, доминанта является мощным фактором отбора биологи­чески и социально наиболее значимых раздражений.

4. Принцип обратной связи.

Осуществляется эта связь за счет потока импульсов с рецепторов.

5. Принцип субординации, или соподчинения.
Нижележащий отдел ЦНС подчиняется указаниям вышележащего отдела.


Материалы для самостоятельной подготовки

Вопросы к коллоквиуму и для самоконтроля

1. На какие отделы подразделяют нервную систему?

2. К ЦНС относят. . . .

3. Назовите основные функции ЦНС.

4. Как Вы понимаете выражение «нейрон-структурная и функциональная еди­ница нервной системы»?

5. Каковы основные функции нейронов?

6. В чем заключается:

■ рецепторная;

■ интегративная;

■ эффекторная функция нейронов?

7. Назовите функции глиальных клеток.

8. Охарактеризуйте основные структурные элементы нервной клетки и их функции.

9. Дайте классификацию нейронов по количеству отростков.

10. Какие типы нейронов Вы знаете?

11. Как происходит взаимодействие нейронов между собой и с эффекторными органами?

12. Что такое синапс? Как он устроен?

13. Как называются химические вещества, с помощью которых происходит пе-редача нервных импульсов?

14. Приведите примеры: возбуждающих; тормозных медиаторов.

15. Опишите механизм действия медиатора в возбуждающих; тормозных синапсах.

16. Назовите особенности проведения возбуждения в ЦНС.

17. Что такое рефлекс?

18. Из каких частей состоит рефлекторная дуга? Что такое нервные центры?

19. На чем основаны процессы координации деятельности ЦНС?

20. Кем и когда было открыто явление торможения в ЦНС?

21. В чем состоит значение процесса торможения в ЦНС?

22. Чем отличается процесс торможения от процесса возбуждения?

23. Какие виды торможения Вы знаете?

24. Назовите специальные тормозные нейроны.

25. Укажите особенности постсинаптического и пресинаптического тормо-жения.

26. Перечислите принципы координационной деятельности ЦНС.

27. Кем и когда был открыт принцип доминанты?

28. Какими свойствами обладает доминантный очаг возбуждения?

29. Дайте определение доминанты.

30. Распространение процесса возбуждения на другие нервные центры называ-ют явлением. . . .

31. Схождение различных путей проведения нервных импульсов к одной и той же нервной клетке носит название. . . .

32. Способность нейрона устанавливать многочисленные синаптические связи с различными нервными клетками называется. . . . .

1. Функцией нервной системы является:

а. регуляция работы органов и систем органов;

б. осуществление связи организма с внешней средой;

в. согласование деятельности разных органов и систем органов;

г. а + б + в.

2. Укажите неверный ответ.
Периферическая нервная система представлена:

а. нервными узлами;

б. нервными сплетениями;

в. нервными волокнами (аксонами) и их окончаниями;

г. нервными центрами.


3. Нейрон состоит:

а. из тела;

б. из дендритов;

в. из длинного отростка – аксона;

г. из аксонных окончаний;

д. а + б + в + г.

4. Функция восприятия нервного импульса осуществляется:

б. аксоном;

в. дендритами.

5. Передача нервного импульса с нейрона осуществляется:

а. в синапсе;

б. в теле;

в. в дендрите.

6. Серое вещество мозга образовано скоплением:

а. отростков нейронов;

б. тел нейронов;

в. концевых частей аксонов.

7. Центростремительными называются нейроны, которые проводят нервный
импульс:

а. от рецептора в ЦНС;

б. из ЦНС к рабочему органу;

в. от одной нервной клетки к другой.

8. Отметьте неверный ответ.
Вставочными называются нейроны, которые:

а. полностью расположены в ЦНС;

б. передают нервный импульс с одного нейрона на другой;

в. передают нервный импульс на рабочий орган.

9. Центробежными называются нейроны, проводящие нервный импульс:

а. из ЦНС к рабочему органу;

б. от рецептора в ЦНС;

в. от одного нейрона на другой в пределах ЦНС.

10. Наибольшая скорость проведения нервного импульса характерна для воло-
кон:

а. соматической нервной системы;

б. вегетативной нервной системы;

в. одинакова для а и б.


Модуль 2 ЧАСТНАЯ ФИЗИОЛОГИЯ ЦНС

Лекция 7

ФУНКЦИИ СПИННОГО МОЗГА

1. Спинной мозг. Нейронная организация. Функции спинного мозга

В ЦНС различают более древние сегментарные отделы (спинной, продолговатый и средний мозг, регулирующие функции отдельных частей тела, лежащих на том же уровне) и эволюционно более молодые надсегментарные (промежуточный мозг, мозжечок и кора больших полушарий) отделы нервной системы


Гипоталамус


Полосатое тело


Рис. 9. Основные отделы центральной нервной системы (схема)

Надсегментарные отделы не имеют непосредственных связей с органами тела, а управляют их деятельностью через нижележащие сегментарные отделы.

Спинной мозг является низшим и наиболее древним отделом ЦНС.

Спинной мозг характеризуется выраженным сегментарным строением, отражающим сегментарное строение тела позвоночных. От каждого спинномозгового сегмента отходят две пары передних (вентральных) и задних (дорсальных) корешков (рис. 10).

Рис. 10. Передние (1) и задние (2) корешки спинного мозга (схема),

3 – спинномозговой узел

Дорсальные корешки формируют афферентные входы, вентральные – эфферентные выходы спинного мозга. В них проходят аксоны альфа- и гаммамотонейронов, а также преганглионарных нейронов вегетативной нервной системы (ВНС). После перерезки передних корешков на одной стороне наблюдается полное выключение двигательных реакций, но чувствительность этой стороны тела сохраняется; перерезка задних корешков выключает чувствительность, но не приводит к утрате двигательных реакций мускулатуры. При травме спинного мозга, когда нарушается связь между спинным и головным мозгом, наступает спинальный шок.

На поперечном срезе спинного мозга ясно выделяется центрально расположенное серое вещество, образованное скоплением тел нервных клеток, и окаймляющее его белое вещество, образованное нервными волокнами. В сером веществе различают передние и задние рога, между которыми лежит промежуточная зона. Кроме того, в грудных сегментах различают боковые рога. В составе серого вещества спинного мозга человека насчитывают около 13,5 млн нервных клеток.


Нейронная организация спинного мозга. Все нейронные элементы спинного мозга могут быть подразделены на 4 основные группы:

■ эфферентные нейроны;

■ вставочные нейроны, составляющие основную массу (97 %) всех нейронов и обеспечивающие сложные процессы координации внутри спинного мозга;

■ нейроны восходящих трактов;

■ интраспинальные волокна чувствительных афферентных нейронов.

Эфферентные нейроны. Среди мотонейронов спинного мозга вы­деляют крупные клетки с длинными дендритами - альфа-мотонейроны и мелкие - гамма-мотонейроны. От альфа-мотонейронов отходят наиболее толстые и быстропроводящие волокна двигательных нервов, вызывающие сокращения скелетных мышечных волокон. Тонкие волокна гамма-мото­нейронов не вызывают сокращения мышц. Они подходят к проприорецепторам - мышечным веретенам и регулируют их чувствительность.

Благодаря сочетанной активации альфа- и гамма-мотонейронов ре­цепторы растяжения могут активироваться не только во время растяжения мышц, но и при их сокращении, что важно для обеспечения моторной ко­ординации.

Особую группу эфферентных нейронов представляют преганглионарные нейроны ВНС , расположенные как в боковых, так и в передних рогах спинного мозга.

Вставочные нейроны спинного мозга представляют довольно раз­нородную группу нервных клеток, тела, дендриты и аксоны которых нахо­дятся в пределах спинного мозга.

Нейроны восходящих трактов также целиком находятся в преде­лах ЦНС. Тела этих клеток расположены в сером веществе спинного мозга, в то время как их аксоны проецируются к нейронам различных вышеле­жащих образований.

Основными функциями спинного мозга являются рефлекторная и проводниковая.

Рефлекторная функция спинного мозга. В спинном мозге замыка­ется большое количество рефлекторных дуг, с помощью которых регули­руются различные функции организма.

Рефлексы спинного мозга можно подразделить на двигательные , осуществляемые альфа-мотонейронами передних рогов, и вегетативные, осуществляемые эфферентными клетками боковых рогов.

Мотонейроны спинного мозга иннервируют все скелетные мышцы (за исключением мышц лица). Спинной мозг осуществляет эле­ментарные двигательные рефлексы - сгибательные и разгибательные, ритмические, шагательные, возникающие при раздражении кожи или про приорецепторов мышц и сухожилий, а также посылает постоянную импульсацию к мышцам, поддерживая мышечный тонус.

К числу наиболее простых относятся сухожильные рефлексы. Они легко вызываются с помощью короткого удара по сухожилию и имеют важное диагностическое значение в неврологической практике, т.к. позволяют оценивать функциональное состояние альфа-мотонейронов по изменению ответных потенциалов мышц при периферических раздражениях. Особенно выражены сухожильные рефлексы в мышцах разгибателей ноги (коленный рефлекс, Н-рефлекс или рефлекс Гофмана) – ответная реакция икроножной мышцы при раздражении большеберцового нерва; и голени (ахиллов рефлекс, Т-рефлекс (тендон – сухожилие) – ответная реакция камбаловидной мышцы при раздражении ахиллова сухожилия. Рефлекторная реакция проявляется в виде резкого сокращения мышцы.

Специальные мотонейроны иннервируют дыхательную мускулатуру (межреберные мышцы и диафрагму) и обеспечивают дыхательные движения. Вегетативные нейроны иннервируют все внутренние органы (сердце, сосуды, потовые железы, железы внутренней секреции, пищеварительный тракт, мочеполовую систему). Так, центры дефекации и мочеиспускания лежат в нижнем отделе спинного мозга.

Проводниковая функция спинного мозга связана с передачей в вышележащие отделы нервной системы получаемого с периферии потока информации и с проведением импульсов, идущих из головного мозга на периферию. Таким образом, основная функция спинного мозга у человека проведение возбуждения от органов к головному мозгу и от него к органам.

2. Функции заднего мозга

Головной мозг устроен значительно сложнее, чем спинной.

Продолговатый мозг и варолиев мост (в целом – задний мозг) являются частью ствола мозга. В заднем мозге сосредоточено управление жизненно важными процессами. Здесь находятся:

1. большая группа черепномозговых нервов (от V до XII пары), иннервирующих кожу, слизистые оболочки, мускулатуру головы и ряд внутренних органов (сердце, легкие, печень);

2. центры многих пищеварительных рефлексов – жевания, глотания, движений желудка и части кишечника, выделения пищеварительных соков;

3. центры некоторых защитных рефлексов (чихания, кашля, мигания, слезоотделения, рвоты);

4. центры водно- солевого и сахарного обмена;

5. на дне IV желудочка в продолговатом мозге находится жизненно важный дыхательный центр, состоящий из центров вдоха и выдоха. Его составляют мелкие клетки, посылающие импульсы к дыхательным мышцам через мотонейроны спинного мозга. Удар в продолговатый мозг вызывает сильное нервное возбуждение и паралич животного;

6. в непосредственной близости от дыхательного центра расположен сердечно- сосудистый центр. Его крупные клетки регулируют деятельность сердца и просвет сосудов. Переплетение клеток дыхательного и сердечно-сосудистого центров обеспечивает их тесное взаимодействие;

7. продолговатый мозг играет важную роль в осуществлении двигательных актов и в регуляции тонуса скелетных мышц, повышая тонус мышц-разгибателей. Он принимает участие, в частности, в осуществлении установочных рефлексов позы (шейных, лабиринтных).

Это все центры безусловных рефлексов.

Через продолговатый мозг проходят восходящие пути слуховой, вестибулярной, проприоцептивной и тактильной чувствительности. На уровне продолговатого мозга перекрещиваются нервные пути.

Функции центров продолговатого мозга находятся под контролем высших отделов головного мозга.

3. Функции среднего мозга

В состав среднего мозга входят скопления нервных клеток, получивших названия четверохолмия, черная субстанция и красные ядра. В передних буграх четверохолмия находятся зрительные подкорковые центры, а в задних – слуховые.

Средний мозг участвует в регуляции движений глаз, осуществляет зрачковый рефлекс (расширение зрачков в темноте и сужение их на свету).

Четверохолмие выполняет ряд реакций, являющихся компонентами ориентировочного рефлекса. Если Вы вдруг ослеплены неожиданно ярким светом, Вы плотно закрываете глаза. В ответ на внезапное раздражение происходит поворот головы и глаз в сторону раздражителя, а у животных – настораживание ушей. Этот рефлекс (по И. П. Павлову, рефлекс « Что такое) необходим для подготовки организма к своевременной реакции на любое новое воздействие.

Черная субстанция среднего мозга имеет отношение к рефлексам жевания и глотания, участвует в регуляции тонуса мышц (особенно при выполнении мелких движений пальцами рук) и в организации содружественных двигательных реакций.

Красное ядро среднего мозга выполняет моторные функции – регулирует тонус скелетных мышц, вызывая усиление тонуса мышц-сгибателей. Оказывая значительное влияние на тонус скелетных мышц, средний мозг принимает участие в ряде установочных рефлексов поддержания позы (выпрямительных – установке тела теменем вверх и др.), прямолинейного движения, вращения тела, приземления, подъема и спуска. Все они возникают при участии органов равновесия и обеспечивают сложную координацию движений в пространстве.

Лекция 8

ФУНКЦИИ СПИННОГО МОЗГА

И ПОДКОРКОВЫХ ОТДЕЛОВ ГОЛОВНОГО МОЗГА (окончание)

Торможение - особый нервный процесс, который обусловливается возбуждением и внешне проявляется угнетением другого возбуждения. Оно способно активно распространяться нервной клеткой и ее отростками. Основал учение о центральноv торможение И. М. Сеченов (1863), который заметил, что изгибающий рефлекс лягушки тормозится при химическом раздражении среднего мозга. Торможение играет важную роль в деятельности ЦНС, а именно: в координации рефлексов; в поведении человека и животных; в регуляции деятельности внутренних органов и систем; в осуществлении защитной функции нервных клеток.

Типы торможения в ЦНС

Центральное торможение распределяется по локализации на пре-и постсинаптическое;
по характеру поляризации (зарядом мембраны) - на гипер-и деполяризации;
по строению тормозных нейронных цепей - на реципрокное, или соединенное, обратное и латеральное.

Пресинаптическое торможение , как свидетельствует название, локализуется в пресинаптических элементах и связано с угнетением проведения нервных импульсов в аксональных (пресинаптических) окончаниях. Гистологическим субстратом такого торможения является аксональные синапсы. К возбуждающему аксону подходит вставной тормозной аксон, который выделяет тормозной медиатор ГАМК . Этот медиатор действует на постсинаптическую мембрану, которая является мембраной возбуждающего аксона, и вызывает в ней деполяризацию. Возникшая деполяризация тормозит вход Са2 + из синаптической щели в заключение возбуждающего аксона и таким образом приводит к снижению выброса возбуждающего медиатора в синаптическую щель, торможение реакции. Пресинаптическое торможение достигает максимума через 15-20 мс и длится около 150 мс, то есть гораздо дольше, чем постсинаптическое торможение. Пресинаптическое торможение блокируется судорожными ядами - бикулином и пикротоксин, которые являются конкурентными антагонистами ГАМК .

Постсинаптическое торможение (ГПСП) обусловлено выделением пресинаптическим окончанием аксона тормозного медиатора, который снижает или тормозит возбудимость мембран сомы и дендритов нервной клетки, с которой он контактирует. Оно связано с существованием тормозных нейронов, аксоны которых образуют на соме и дендритах клеток нервных окончаний, выделяя тормозные медиаторы - ГАМК и глицин . Под влиянием этих медиаторов возникает торможение возбуждающих нейронов. Примерами тормозных нейронов являются клетки Реншоу в спинном мозге, нейроны грушевидные (клетки Пуркинье мозжечка), звездчатые клетки коры большого, мозга и др..
Исследованием П. Г. Костюка (1977) доказано, что постсинаптического торможения связано с первичной гиперполяризацией мембраны сомы нейрона, в основе которой лежит повышение проницаемости постсинаптической мембраны для К +. Вследствие гиперполяризации уровень мембранного потенциала удаляется от критического (порогового) уровня. То есть происходит его увеличение - гиперполяризация. Это приводит к торможению нейрона. Такой вид торможения называется гиперполяризационным.
Амплитуда и полярность ГПСП зависят от исходного уровня мембранного потенциала самого нейрона. Механизм этого явления связан с Сl + . С началом развития ТПСП Сl - входит в клетку. Когда в клетке становится его больше, чем снаружи, глицин конформирует мембрану и через открытые ее отверстия Сl + выходит из клетки. В ней уменьшается количество отрицательных зарядов, развивается деполяризация. Такой вид торможения называется деполяризационным.

Постсинаптическое торможение локальное. Развивается оно градуально, способное к суммации, не оставляет после себя рефрактерности . Является более оперативным, четко адресованным и универсальным тормозным механизмом. По своей сути это «центральное торможение», которое было описано в свое время Ch. S. Sherrington (1906).
В зависимости от структуры тормозного нейронного цепочки, различают следующие формы постсинаптического торможения: реципрокное, обратное и латеральное, которое является собственно разновидностью обратного.

Реципрокное (сочетанное) торможение характеризуется тем, что в том случае, когда при активизации афферентов возбуждаются, например, мотонейроны мышц-сгибателей, то одновременно (на этой стороне) тормозятся мотонейроны мышц-разгибателей, действующие на этот же сустав. Происходит это потому, что афференты от мышечных веретен образуют возбуждающие синапсы на мотонейронах мышц-агонистов, а через посредство вставного тормозного нейрона - тормозные синапсы на мотонейронах мышц-антагонистов. С физиологической точки зрения такое торможение очень выгодно, поскольку облегчает движение сустава «автоматически», без дополнительного произвольного или непроизвольного контроля.

Обратное торможение. В этом случае от аксонов мотонейрона отходит одна или несколько коллатералей, которые направляются в вставных тормозных нейронов, например, клеток Реншоу. В свою очередь, клетки Реншоу образуют тормозные синапсы на мотонейроны. В случае возбуждения мотонейрона активизируются и клетки Реншоу, вследствие чего происходит гиперполяризация мембраны мотонейрона и тормозится его деятельность. Чем больше возбуждается мотонейрон, тем больше ощутимые тормозные влияния через клетки Реншоу. Таким образом, обратное постсинаптическое торможение функционирует по принципу отрицательной обратной связи. Есть предположение, что этот вид торможения требуется для саморегуляции возбуждения нейронов, а также для предотвращения их перевозбуждению и судорожным реакциям.

Латеральное торможение. Тормозная цепь нейронов характеризуется тем, что вставные тормозные нейроны влияют не только на воспаленную клетку, но и на соседние нейроны, в которых возбуждение является слабым или вовсе отсутствует. Такое торможение называется латеральным, поскольку участок торможения, который образуется, содержится сбоку (латерально) от возбужденного нейрона. Оно играет особенно важную роль в сенсорных системах, создавая явление контраста.

Постсинаптическое торможения преимущественно легко снимается при введении стрихнина, который конкурирует с тормозным медиатором (глицином) на постсинаптической мембране. Столбнячный токсин также подавляет постсинаптическое торможение, нарушая высвобождение медиатора из тормозных пресинаптических окончаний. Поэтому введение стрихнина или столбнячного токсина сопровождается судорогами, которые возникают вследствии резкого усиления процесса возбуждения в ЦНС, в частности, мотонейронов.
В связи с раскрытием ионных механизмов постсинаптического торможения появилась возможность и для объяснения механизма действия Вr. Натриq бромид в оптимальных дозах широко применяется в клинической практике как седативное (успокоительное) средство. Доказано, что такой эффект натрия бромида связан с усилением постсинаптического торможения в ЦНС. -

Роль различных видов центрального торможения

Главная роль центрального торможения заключается в том, чтобы во взаимодействии с центральным возбуждением обеспечивать возможность анализа и синтеза в ЦНС нервных сигналов, а следовательно, возможность согласования всех функций организма между собой и с окружающей средой. Эту роль центрального торможения называют координационной. Некоторые виды центрального торможения выполняют не только координационную, а и защитную (охранную) роль. Предполагают, что основная координационная роль пресинаптического торможения заключается в угнетении в ЦНС малосущественными афферентными сигналами. За счет прямого постсинаптического торможения согласуется деятельность антагонистических центров. Обратное торможение, ограничивая максимально возможную частоту разрядов мотонейронов спинного мозга, выполняет и координационную роль (согласовывает максимальную частоту разрядов мотонейронов со скоростью сокращения мышечных волокон, которые они иннервируют) и защитную (предотвращает возбуждению мотонейронов). У млекопитающих этот вид торможения распространен в основном в спинномозговых афферентных системах. В высших отделах мозга, а именно в корковом веществе большого мозга, доминирует постсинаптическое торможение.

Какое функциональное значение пресинаптического торможения? За его счет осуществляется воздействие не только на собственный рефлекторный аппарат спинного мозга, но и на синаптические переключения ряда восходящих по головному мозгу трактов. Известно также о нисходящем пресинаптическом торможении первичных афферентных волокон группы Аа и кожных афферентов. В этом случае пресинаптическое торможение является, очевидно, первым «ярусом» активного ограничения информации, поступающей извне. В ЦНС, особенно в спинном мозге, пресинаптическое торможение часто выступает в роли своеобразной отрицательной обратной связи, которая ограничивает афферентную импульсацию при сильных (например, патологических) раздражениях и таким образом отчасти выполняет защитную функцию по отношению спинномозговых и выше расположенных центров.

Функциональные свойства синапсов не являются постоянными. В некоторых условиях эффективность их деятельности может расти или уменьшаться. Обычно при высоких частотах раздражения (несколько сот за 1 с) в течение нескольких секунд или даже минут облегчается синаптическая передача. Это явление получило название синаптической потенциации. Такая синаптическая потенциация может наблюдаться и по окончании тетанической стимуляции. Тогда она будет называться посттетанической потенциацией (ПТП). В основе ПТП (долговременного увеличения эффективности связи между нейронами), вполне вероятно, лежат изменения функциональных возможностей пресинаптического волокна, а именно его гиперполяризация. В свою очередь, это сопровождается повышением выхода медиатора в синаптическую щель и появлением увеличенного ВПСП в постсинаптической структуре. Есть данные и о структурных изменениях при ПТП (набухание и рост пресинаптических окончаний, сужение синаптической щели т.д.).

ПТП гораздо лучше выражена в высших отделах ЦНС (например, в гиппокампе, пирамидных нейронах коры большого мозга) по сравнению с спинномозговыми нейронами. Наряду с ПТП в синаптическом аппарате может возникать постактивационная депрессия, выражающаяся уменьшением амплитуды ВПСП. Эту депрессию многие исследователи связывают с ослаблением чувствительности к действию медиатора (десенсибилизации) постсинаптической мембраны или различным соотношением затрат и мобилизации медиатора.

С пластичностью синаптических процессов, в частности с ПТП, возможно, связаны формирования новых межнейронных связей в ЦНС и их закрепление, т.е. механизмы обучения и памяти. Вместе с тем следует признать, что пластические свойства центральных синапсов изучены пока недостаточно.