Регистрация в гибдд машины на газогенераторных двигателях. Как мы делали газогенератор автомобильный (подойдет и для бытовых нужд). Газогенераторы и отопление: основные мифы

Эта статья – для мастеровитых энтузиастов, не жалеющих времени и сил для достижения результата. Зачем такая преамбула? Потому что здесь пойдет речь о том, как сделать газогенератор своими руками. Это довольно сложный агрегат, вырабатывающий из дров и угля горючее, способное заменить традиционные виды топлива – бензин в автомобиле и природный газ в доме. Мы познакомим вас с устройством газгена и трудностями, связанными с его изготовлением, установкой и эксплуатацией.

Схема газогенератора и принцип работы

Углерод – это основа всей биомассы нашей планеты, в том числе древесины и различных углей, в который превратились спрессованные растения за миллионы лет. В и двигателях внутреннего сгорания (ДВС) мы сжигаем углеводороды, добываемые из недр земли: метан, пропан и бензин. Они дорожают с каждым годом, заставляя домашних умельцев искать новые пути с помощью старых изобретений. Одно из них – автомобили с газогенераторами на дровах, появившиеся в начале прошлого столетия.

В первой половине 20-го века дровяными агрегатами оснащались легковые и грузовые авто

Суть идеи в том, чтобы путем пиролиза получать из дерева газообразную горючую смесь, состоящую из нескольких соединений на основе углерода:

  • угарный газ (СО);
  • водород в свободном виде (Н 2);
  • всем известный метан (СН 4);
  • другие углеводородные соединения (общая формула - CnHm).

Примечание. Основным горючим компонентом смеси является окись углерода СО, доля остальных веществ из приведенного перечня невелика. Присутствуют в ней и другие газы, называемые балластными, – азот, углекислый газ (СО 2) и водяной пар. Данные о процентном соотношении веществ в конечном продукте и его теплотворной способности представлены в таблице:

Для выделения газообразного топлива служит пиролизный газогенератор на дровах (иначе – газген), чье устройство показано на схеме. Это закрытая емкость с колосниками, заполняемая твердым топливом через верхний бункер, вместо дымохода – патрубок выхода газовой смеси. Принцип работы газгена следующий:

  1. Розжиг и горение массива дров происходит снизу, над колосниками. В камеру через фурмы вдувается воздух в ограниченном количестве (35% от нужного для полного сжигания объема).
  2. В зоне горения выделяется большое количество тепла и в результате реакции кислорода с углеродом образуется углекислота СО 2 . Содержание угарного газа и других воспламеняющихся веществ здесь невелико.
  3. В зоне восстановления (газификации) под воздействием высокой температуры углекислый газ насыщается углеродом из древесины и превращается в горючее соединение – СО. Здесь же происходит разложение водяного пара и образование свободного водорода.
  4. Раскаленные газы, проходя через верхние слои топлива, подсушивают дерево и заставляют его превращаться в полукокс (сухая перегонка), благодаря чему выделяется больше углерода.
  5. Газовая смесь покидает корпус газгена и отправляется на последующую очистку для подачи в двигатель внутреннего сгорания или котел.

Функциональная схема газогенератора прямого процесса

Для справки. Восстановление углекислоты (преобразование в СО) протекает с поглощением тепла, выделяемого в процессе горения. Кстати, между зонами нет четких границ и на чертеже они показаны условно.

Принцип горизонтальной газификации – смесь горючих газов выходит через боковой патрубок генератора

Для ясности мы описали генерацию горючего путем прямого процесса газификации, когда массив топлива движется навстречу воздушному потоку. Существуют и другие способы – обращенный процесс (воздух продувается сверху вниз) и горизонтальный метод, показанный выше на схеме газогенератора. Если вы хотите подробно разобраться в теоретических моментах, предлагаем посмотреть следующее видео:

Конструкция установки

Чтобы успешно эксплуатировать авто на дровах или сжигать полученное топливо в котле, одного газогенератора недостаточно. Дело в том, что помимо балластных газов, самодельное горючее содержит летучие примеси и смолы, проще говоря, - дым и сажу. Ни автомобильный мотор, ни горелочное устройство котла не рассчитано на такое топливо и быстро выйдет из строя. Поэтому была придумана система фильтрования, входящая в состав газогенераторной установки и включающая 3 дополнительных агрегата:

  • фильтр грубой очистки – циклон;
  • радиатор – охладитель;
  • фильтр тонкой очистки.

Очередность размещения этих элементов показана на технологической схеме:

Циклон для газогенератора представляет собой вертикальный цилиндр с двумя патрубками и конусом на конце, как показано на чертеже. Загрязненная газовая смесь, попадая внутрь него, движется по кругу на высокой скорости, за счет чего крупные и средние частицы золы отбрасываются на стенки центробежной силой и выводятся через отверстие в конусе.

Схема работы циклона, который очищает силовой газ от примесей

Чем выше температура газа, тем меньше его плотность. Это значит, что горючее на выходе из газгена нельзя использовать в ДВС без предварительного охлаждения, иначе оно просто не воспламенится в цилиндрах. Поэтому в промышленных газогенераторных установках сразу после циклона ставится воздушный либо водяной теплообменник, а следом – компрессор, нагнетающий охлажденную газовую смесь в распределительную емкость.

В конце технологической цепочки стоит фильтр тонкой очистки, удаляющий из полученного топлива мелкие частицы сажи и золы. Пример такого агрегата – так называемый скруббер, в котором газы очищаются за счет продувания через воду. Теперь, когда мы разобрались с технологией производства горючего, можно сделать собственную недорогую установку, способную обеспечить работу двигателя внутреннего сгорания на дровах.


Самодельный газген, изготовленный заграничными коллегами

Изготовление газгена для автомобиля

Перед тем как сделать работоспособный газогенератор для автомобиля, предлагаем ознакомиться с некоторыми рекомендациями:

  1. Организовать подачу силового газа в современном авто с инжектором – задача непростая. Придется менять настройки контроллера (прошивку), иначе мотор на древесном топливе работать не будет. Нужна машина со старой системой топливоподачи – карбюратором.
  2. Чем больше мощность и рабочий объем двигателя, тем выше производительность должна быть у газогенератора. Соответственно, он вырастет в размерах.
  3. Чтобы уместить установку в багажник легкового авто, потребуется вырезать часть днища. Если вы не хотите затрагивать кузов, то сразу планируйте ставить дровяной генератор с фильтрами и охладителем на прицеп.
  4. Для изготовления камеры газификации, где температура превышает 1000 °С, применяйте низкоуглеродистую толстую сталь (4-5 мм).
  5. Чтобы уменьшить содержание смол в газовой смеси, делайте камеру с горловиной, как это показано на чертеже.

Важный момент. Не стоит увеличивать диаметр камеры газификации (на чертеже он равен 340 мм) с целью добиться большей производительности. Прирост получится мизерный, а качество переработки древесины ухудшится. А вот высоту 183 см выдерживать не обязательно, разве что вы поставите агрегат на прицеп или на раму грузовика. Топливный бункер и зольник можно укоротить.

Для сборки внутренней части автомобильного газогенератора (бункера) сгодится старый пропановый баллон, ресивер от грузовика КаМАЗ или толстостенная труба. Учитывая, что диаметр стального сосуда равен 300 мм, остальные размеры нужно пропорционально уменьшить. Исключение – камера газификации, ее минимальный диаметр составляет 140 мм. На кожух и крышку генератора пойдет металл толщиной 1.5 мм. Последняя уплотняется графитно-асбестовым шнуром.


Варианты охладителей горючей смеси из автомобильного радиатора и батареи отопления

Сопутствующие агрегаты – фильтры и охладители – делаются так:

  1. Циклон сварите из отработавшего огнетушителя или отрезка трубы диаметром 10 см, как это изображено на чертеже. Входной патрубок приделайте сбоку, выпускной – сверху.
  2. Охладитель силового газа лучше сделать из стальных труб в виде змеевика. Есть и другие варианты: использование старых конвекторов, батарей отопления и радиаторов.
  3. Фильтр тонкой очистки изготовьте из любой цилиндрической емкости (например, бочки), наполненной базальтовым волокном.

Более детальную информацию о сборке газогенератора своими силами вы получите, посмотрев видео:

Для розжига и запуска газгена вам потребуется вентилятор в виде улитки, устанавливаемый в моторном отсеке (для испытаний сойдет и бытовой пылесос). К нему требование простое: детали, соприкасающиеся с газовой смесью, должны быть металлическими. Топливная магистраль, ведущая к карбюратору, прокладывается под днищем авто и выполняется из стальной трубы.

Для справки. Если вместо дров использовать древесный уголь, то примесей на выходе газогенератора будет значительно меньше, что хорошо для двигателя. Такое топливо выжигается из дерева по простой технологии – в закрытой бочке или яме.


Бункер для древесного угля помещается в багажник «Жигулей»

Подключение и запуск ДВС

Поскольку теплотворная способность генерируемого из дров топлива гораздо ниже, чем у бензина, то для нормальной работы мотора соотношение воздух/горючее нужно изменить. Для этого придется смастерить смеситель и поставить его на впускном тракте. Простейший вид смесителя – воздушная заслонка, управляемая тягой из салона.

Завести холодный мотор на дровах – та еще задачка. Поэтому не стоит полностью отказываться от бензина, а подавать его только во время запуска, а потом переходить на горючее, вырабатываемое газгеном. Чтобы реализовать переключение на разные виды топлива, изготовьте смеситель по схеме, предложенной в книге И. С. Мезина «Транспортные газогенераторы»:

Теперь про особенности пуска и работы ДВС на древесине и угле:

  • размер дров, загружаемых в бункер, не должен превышать 6 см;
  • сырую древесину применять нельзя, поскольку вся выделяемая теплота уйдет на испарение воды и процесс пиролиза будет крайне вялым;
  • розжиг производится через специальное отверстие с обратным клапаном при включенном вентиляторе не позже чем за 20 минут до поездки;
  • мощность мотора снижается примерно на 50% по сравнению с ездой на бензине;
  • из предыдущего пункта вытекает, что ресурс работы двигателя на самодельном горючем тоже уменьшается.

Примечательно, что после кратковременных стоянок машина спокойно заводится от газгена, без перехода на бензин. После длительного простоя потребуется 5-10 минут на повторный розжиг установки. Как происходит запуск двигателя авто от самодельного газогенератора на дровах, смотрите в следующем видеоматериале:

Заключение

Дровяные газогенераторы, сделанные своими руками, можно не только ставить на автомобили, но и применять для домашних нужд. Про отопительные котлы мы уже говорили. Также многие домовладельцы пользуются бытовыми электрогенераторами, работающими от дизельных или бензиновых двигателей. Если их перевести на дрова, то получаемая от электростанции энергия станет гораздо дешевле.

В поисках альтернативного источника энергии пришло понимание, что не обязательно добывать газ в шахтах, чтобы затем сжигать его в котлах и двигателях внутреннего сгорания, горючий газ можно добывать из отходов производства и древесины. Газогенератор или как его еще называют генератор газов путем сжигания местного топлива - дров, торфа, древесного угля, опилок и других отходов древесины, а также иногда других органических остатков способны выделять/генерировать горючие газы, такие как СО, СН4, Н2 и другие. Вариантов использования полученного газа несколько, но в любом случае в основу каждого устройства положен принцип газогенератора. О том, как работает газогенератор, из каких элементов он состоит, а также какие процессы проходят внутри него, мы расскажем в данной статье. Также рассмотрим варианты дальнейшего использования полученного газа и места, где можно устанавливать подобные агрегаты.

Итак, какие же существуют варианты использования газа, полученного в газогенераторе?

Первый - горючий газ направляется к газовой плите на кухне и используется для приготовления пищи. Второй - горючий газ сжигается сразу же в пиролизном котле отопления с газогенератором, соответственно, используется для отопления дома или теплиц. Кстати, подобные котлы могут называться газовым котлом на дровах, твердотопливным пиролизным котлом, газогенераторным котлом на дровах. Все они могут использоваться как для бытовых нужд, так и для отопления огромных производств и цехов или предприятий. Третий - горючий газ может направляться в двигатель внутреннего сгорания, который служит приводом насосной станции или генератора электроэнергии. Газовый генератор на дровах позволяет получать электроэнергию в тех регионах, где нет возможности провести линии электропередач, выполнить прокладку газопровода и затруднен подвоз газа в баллонах. Помимо автономности у газогенераторов есть и другие преимущества, которые мы раскроем ниже.

Преимущества и недостатки генераторов газа

В качестве примера рассмотрим преимущества и недостатки газогенераторных котлов отопления. Пиролизные котлы относятся к категории твердотопливных, но существенно отличаются от обычных печей на дровах или угле, где происходит обычный процесс сгорания топлива.

Преимущества газогенераторных котлов :

  • КПД газогенераторных котлов находится в диапазоне 80 - 95 %, в то время как КПД обычного твердотопливного котла редко превышает 60 %.
  • Регулируемый процесс горения в газогенераторном котле - одна закладка дров может гореть от 8 до 12 часов, для сравнения в обычном котле горение длится 3 - 5 часов. В газогенераторных котлах с верхним горением сгорание дров длится до 25 часов, а уголь может гореть 5 - 8 дней.
  • Топливо сгорает полностью, поэтому чистить зольник и газоход приходится не часто.
  • Благодаря тому, что процесс горения можно регулировать (мощность регулируется в диапазоне 30 - 100 %), работу котла можно автоматизировать, как например, газового или жидкотопливного.
  • Выброс вредных веществ в атмосферу из газогенератора минимален.
  • Газогенераторные котлы экономнее обычных.
  • Топливо для газогенераторов не обязательно должно быть подсушено до 20 % влажности, существуют модели котлов, в которых можно использовать древесину до 50 % влажности и даже свежесрубленную.
  • Возможность загрузки в котел неколотых поленьев до 1 м длиной и даже больше.

  • Помимо дров и отходов древесной промышленности в пиролизных котлах можно утилизировать резину, пластмассу и другие полимеры.
  • Высокая безопасность котла по сравнению с обычным твердотопливным котлом обеспечивается автоматикой и материалами, из которых изготовлен агрегат, а в особенности камеры сгорания.

Если говорить о газогенераторах, которые используются для производства электроэнергии, то они обладают точно такими же достоинствами, такими как экологичность, экономичность, высокий КПД, высокое октановое число 110 - 140, универсальность в плане используемого топлива и большая эффективность в зимнее время.

Недостатки газогенераторных котлов :

  • На газовый генератор цена в 1,5 - 2 раза выше, чем на обычный твердотопливный котел.
  • В большинстве своем газогенераторы энергозависимы, так как для подсоса воздуха используется вентилятор, но также существуют модели, которые могут работать и без электричества.
  • Если использовать газогенераторный котел на мощности ниже 50 %, то наблюдается нестабильное горение - как результат выпадение в осадок дёгтя, который скапливается в газоходе.
  • Температура обратки отопления не должна быть ниже 60 °С, иначе в газоходе будет выпадать конденсат.
  • Обычно газогенераторы требовательны к влажности топлива, но как уже писалось выше, есть модели, в которых можно сжигать даже свежесрубленную древесину.

Других существенных недостатков газогенераторов не выявлено.

Кстати, газогенераторы - не такое уж и новое изобретение. Еще в середине прошлого века, когда большая часть нефтяных ресурсов Германии шла на вооружение, в качестве топлива для автомобилей использовались дрова. Даже на грузовые автомобили устанавливались газогенераторы. Современные агрегаты не слишком далеко ушли в своей конструкции, но, тем не менее, основательно усовершенствованы.

Принцип работы газового генератора - газогенератора

В генераторе газов или газогенераторе из твердого топлива добывается горючий газ. Основной секрет заключается в том, что в камеру сгорания подается воздух, объема которого недостаточно для полного сгорания топлива, при этом соблюдается высокая температура порядка 1100 - 1400 °С. Полученный газ охлаждается и направляется к потребителю или двигателю внутреннего сгорания, если, например, планируется добывать электричество. Более детально принцип работы газогенератора рассмотрим ниже, уточнив какой процесс в каком элементе агрегата происходит.

Устройство газового генератора на древесине

Рассмотрим устройство газогенератора бытового назначения. Сразу хотелось бы отметить, что пиролизные котлы с газогенератором отличаются от предложенной схемы, так как сгорание газа происходит внутри котла во второй камере сгорания. Мы же рассмотрим лишь сам газогенератор, на выходе из которого получается горючий газ.

Корпус газогенератора изготовлен из листовой стали и имеет сварные швы. Самая распространенная форма корпуса - цилиндрическая, но она вполне может быть и прямоугольной. К нижней части корпуса приварено днище и ножки, на которых будет стоять газогенератор.

Бункер или камера заполнения служит для загрузки внутрь газогенератора топлива. Он также имеет цилиндрическую форму и изготовлен из малоуглеродистой стали. Бункер установлен внутри корпуса газогенератора и закреплен болтами. На крышке люка, ведущего в бункер, на кромках использован асбестовый уплотнитель или прокладка. Так как асбест запрещен для использования в жилых помещениях, то существуют модели газогенераторов, уплотнители крышки которой изготовлены из другого материала.

Камера сгорания находится в нижней части бункера и изготовлена из жаропрочной стали, иногда внутренняя поверхность камеры сгорания отделывается керамикой. В камере сгорания происходит горение топлива. В нижней ее части происходит крекинг смол, для чего там установлена горловина, изготовленная из жаропрочной хромистой стали. Между корпусом и горловиной находится прокладка - уплотнительный асбестовый шнур. В средней части камеры сгорания находятся фурмы для подачи воздуха . Фурмы представляют собой калиброванные отверстия, которые соединяются с воздухораспределительной коробкой, связанной с атмосферой. Фурмы и распределительная коробка также изготавливаются из жаропрочной стали. На выходе из воздухораспределительной коробки установлен обратный клапан, который препятствует выходу горючего газа из газогенератора. Чтобы повысить мощность двигателя или иметь возможность использовать дрова повышенной влажности (более 50 %), перед воздухораспределительной коробкой можно установить вентилятор , который будет нагнетать внутрь воздух.

Колосниковая решетка служит для того, чтобы поддерживать раскаленные угли. Она располагается в нижней части газогенератора. Через отверстия решетки зола от сгоревших углей проваливается в зольник. Чтобы колосниковую решетку можно было очищать от шлака, ее средняя часть сделана подвижной. Для поворота чугунных колосников предусмотрен специальный рычаг.

Загрузочные люки оснащены герметично закрывающимися крышками. Например, верхний загрузочный люк откидывается горизонтально и уплотнен асбестовым шнуром. В креплении крышки есть специальный амортизатор - рессора, которая приподнимает крышку в случае избыточного давления внутри камеры. Сбоку корпуса есть также два загрузочных люка: один сверху - для добавления топлива в зону восстановления, второй снизу - для удаления золы. Отбор газа производится в зоне восстановления, поэтому чаще всего в верхней части газогенератора, но также возможно отведение газа и из нижней части агрегата. Отбор газа производится через патрубок, к которому приварены трубы газопровода. Не обязательно сразу же выводить газ за пределы корпуса газогенератора, пока он горячий, его можно использовать для подогрева и подсушивания дров или другого топлива в камере загрузки. Для этого отводящий газопровод проводится по кольцевой вокруг камеры, между корпусом газогенератора и бункером.

Фильтр «Циклон» и фильтр тонкой очистки располагаются за корпусом газогенератора. Они изготовлены из труб, наполненных фильтрующими элементами.

Прежде чем поступить в фильтр тонкой очистки, газ проходит через охладитель . А после фильтра тонкой очистки очищенный газ поступает в смеситель , где смешивается с воздухом. И только затем газо-воздушная смесь поступает в двигатель внутреннего сгорания.

Более наглядно последовательность движения горючего газа, после того как он вышел из газогенератора, показана на схеме ниже.

Дрова или другое топливо горит в камере сгорания, окисляясь воздухом, поступающим в камеру сгорания через фурмы из воздухораспределительной коробки. Полученный горючий газ поступает в фильтр Циклон, где очищается. Затем охлаждается в фильтре грубой очистки. Затем уже охлажденный газ поступает в фильтр тонкой очистки, а затем в смеситель. Из смесителя полученная смесь поступает в двигатель.

Процесс превращения топлива в газ

И все же: как из твердого топлива получается газ? Внутри газогенератора происходит некий процесс превращения, который разбит на несколько этапов, происходящих в разных зонах:

Зона подсушки находится в верхней части бункера. Здесь температура порядка 150 - 200 °С. Топливо подсушивается горячим газом, который движется по кольцевому трубопроводу, как было описано выше.

Зона сухой перегонки расположена в средней части бункера. Здесь без доступа воздуха и при температуре 300 - 500 °С топливо обугливается. Из древесины выделяются кислоты, смолы и другие элементы сухой перегонки.

Зона горения находится внизу камеры сгорания в зоне, где расположены фурмы, через которые поступает воздух. Здесь при подаче воздуха и температуре 1100 - 1300 °С обугленное топливо и элементы сухой перегонки сгорают, в результате чего образуются газы СО и СО2.

Зона восстановления находится выше зоны горения между колосниковой решеткой и зоной горения. Здесь газ СО2 поднимается вверх, проходит через раскаленный уголь, взаимодействует с углеродом (С) угля и на выходе образуется газ СО - окись углерода. В данном процессе также участвует влага из топлива, поэтому помимо СО образуется СО2 и Н2.

Зоны горения и восстановления называются зоной активной газификации. В результате генераторный газ состоит из нескольких компонентов:

  • Горючие газы : СО (оксид углерода), Н2 (водород), СН4 (метан) и СnНm (непредельные углеводороды без смол).
  • Балласт : СО2 (углекислый газ), О2 (кислород), N2 (азот), Н2О (вода).

Полученный газ охлаждается до температуры окружающей среды, затем очищается от муравьиной и уксусной кислоты, золы, взвешенных частиц и смешивается с воздухом.

Типы газогенераторов

Различают три типа газогенераторов: прямого процесса газогенерации, обратного и горизонтального.

Могут сжигать уголь полукокс и антрацит - топливо небитуминозное. Конструктивное отличие данного типа агрегатов в том, что воздух поступает через колосниковую решетку снизу, а забор газа производится сверху. В газогенераторах прямого процесса влага из топлива не попадает в зону горения, поэтому ее подводят специально. Обогащение генераторного газа водородом из воды повышает мощность генератора.

Газогенераторы опрокинутого или обращенного процесса предназначены для сжигания смолистого топлива - дров, древесного угля и отходов. Их конструктивное отличие в том, что воздух подается в среднюю часть - в зону горения, а забор газа производится ниже зоны горения - в зольнике. Обычно в агрегатах такого типа отобранный горячий газ используется для подогрева топлива в бункере.

Газогенераторы горизонтального или поперечного процесса газификации отличаются тем, что воздух в них подводится сбоку - в нижней части корпуса, причем подается он с высокой скоростью дутья через фурмы. Отбор газа производится напротив фурмы через газоотборную решетку. Активная зона газификации в газогенераторе горизонтального процесса очень мала и сосредоточена между концом фурмы и газоотборной решеткой. Время пуска такого генератора намного меньше, также он легко приспосабливается к смене режимов работы.

Место установки газового генератора

Газогенераторы и газогенераторные котлы отопления можно устанавливать как внутри жилых помещений, например, в подвалах и цокольных этажах, так и на улице.

Так называемые пеллетные котлы чаще всего устанавливают в доме, так как их загрузка не сопряжена с большим количеством мусора, а также мешки с пеллетами весят немного и могут храниться где-то рядом с котлом.

Газогенераторы на дровах, а в особенности на дровах большой длины, имеет смысл устанавливать на улице недалеко от места хранения дров. Так можно будет подвезти дрова на тачке непосредственно к котлу или газогенератору и не спускать их в подвал дома. Стоящий на улице котел избавляет от грязи и золы в подвале. Особенно это актуально для деревянных домов, где повышенные нормы пожаробезопасности. Внешний корпус котла изготавливается из нержавеющей стали, которая не подвержена коррозии. Также котлы теплоизолированы насыпной теплоизоляцией, чтобы температура окружающей среды минимально влияла на процесс газификации и скорость пуска котла. Система регулирования размещается в стальном кожухе под крышкой, чтобы на нее не попадали осадки. Дымовая труба имеет двойные стенки. Если вас интересует, как подключить газовый генератор, если он стоит на улице, то ответ прост - трубы прокладываются в земле, чтобы они минимально охлаждались, если это котел отопления. Трубы отопления подходят к котлу снизу, а сам котел устанавливается так, чтобы при длительных перерывах в использовании он не замерзал.

Кстати, как уже отмечалось, длительность процесса горения топлива в котле может быть от 12 часов и достигать 25 часов. В зависимости от мощности котла и площади отапливаемого помещения, его придется топить раз в два дня, а иногда и раз в неделю. Чтобы сохранить вырабатываемое котлом тепло на столь длительный период, используется теплоаккумулятор.

Дровяной газовый генератор своими руками

В том чтобы изготовить газогенератор своими руками, нет ничего сверхсложного. Многие используют такой агрегат для бытовых нужд или устанавливают на автомобиль. Перед тем как начать изготавливать газогенератор самостоятельно, необходимо ознакомиться с принципом его действия и выбрать подходящую для себя схему работы.

Понадобятся - бочка, трубы или старая батарея радиаторов, фильтры тонкой и грубой очистки газа, вентилятор. С другой стороны набор элементов может быть самым разным, все зависит от фантазии исполнителя.

Ниже посмотрите видео пример газогенератора самостоятельного изготовления.

Схема газогенратора :

В интернете можно найти как фото, так и чертежи по монтажу газовых генераторов и пиролизных котлов. Есть даже умельцы, которые берут за основу готовый проверенный котел и полностью повторяют его в домашних условиях. Получается дешевле намного.

Отличие пиролизного котла от обычного газогенератора в том, что он состоит из двух камер сгорания: в одной сгорает топливо и образуется газ, а в другой - сгорает газ и находится теплообменник. Устройство и принцип работы газогенератора мы уже рассмотрели, добавьте в него только вторую камеру сгорания, которая должна располагаться вверху, и теплообменник сверху. Иногда теплообменник располагают сбоку. Также не забудьте о разных типах газогенераторов, так что вторая камера сгорания может находиться не только сверху.

При сборе дымохода постарайтесь собирать его в последовательности, обратной движению дыма, так на его стенках будет меньше оседать всякой гадости. Сам дымоход лучше сделать легкоразбираемым, чтобы его можно было легко и быстро чистить. Пространство вокруг котла отопления должно быть свободным, так как он нагревается в процессе работы. После монтажа котла придется изучить его «повадки» и подобрать оптимальный для себя режим работы, при котором сгорают все смолы.

Хотелось бы отметить, что газогенератор может рассматриваться не только как сжигатель полезной древесины, но и как утилизатор отходов. В нем можно сжигать остатки линолеума, пакетов, мешков, резины, пластиковых бутылок и другого бытового мусора.

За всю историю существования автомобильных двигателей внутреннего сгорания, они имели несколько разновидностей систем питания. Идея использования различных видов топлива для одних и тех же силовых установок, пришла на автомобильный транспорт с железной дороги.

В нашей стране, ещё со времён царя-батюшки, паровозы отапливались углём, сырой нефтью и дровами, в зависимости от того, в каких регионах какого топлива было больше, и где оно было дешевле. В годы Советской Власти, на железнодорожный транспорт пришло мазутное и торфяное отопление, а в среднеазиатских республиках дело дошло и до брикетов из стеблей саксаула.

Автомобили с газогенераторными установками получили наибольшее распространение в первую очередь в северных и восточных, «лесных» районах СССР, однако, как мы увидим дальше, было оборудование и для работы на торфе, буром угле, коксе…

На первой иллюстрации статьи помещена фотография газогенераторного автомобиля ЗИС-21. Она и даёт наглядное представление о том, почему газогенераторы являлись привилегией грузовиков. Весьма массивное и объёмное специфическое оборудование можно было размещать в основном на грузовом шасси, частично за счёт снижения полезной грузоподъёмности, а отчасти – и за счёт уменьшения размеров кузова, либо кабины. Кстати, не зря дано и следующее фото «3/4 справа»:

По размерам правой двери читатель может видеть, насколько была «усечена» кабина.

В 30-х годах были эксперименты с газогенераторными легковыми машинами ГАЗ М-1, но закончились они, по сути дела, ничем. Во-первых, за редким исключением, такие машины полагались лишь чиновникам в крупных городах, а там и с бензином особых проблем не было, и кроме того, «эмок» — то, на весь СССР, было сделано менее 63 тыс. штук. А во-вторых, из соображений компактности, на подобных машинах можно было использовать лишь газогенераторы так называемого «горизонтального» процесса горения, (см. ниже). А такие установки и для грузовиков были не лучшим вариантом.

О газогенераторных автобусах, в СССР вообще речи не было, если где в других странах они и применялись. «Против» было несколько технологических и эксплуатационных причин, разбирать которые мы здесь не будем. Укажем лишь на то, что и в городах-то больших пассажирских машин не хватало, куда уж отправлять их в глубинку, поближе к дровам и торфу…

В автомобильных газогенераторах применялась древесина в различных видах, (чурки, поленья, щепа), древесный уголь, чёрный и бурый каменные угли, кокс, торф. Но все эти виды топлива давали лишь низкокалорийные генераторные газы, которые по этому показателю уступали бензину. А потому моторы машин ЗИС и ГАЗ теряли в мощности. Но это был не самый плохой вариант замены нефтяного горючего. Не только по стоимости топлива, как таковой. Но и по его запасам в тех районах, куда доставка бензина в больших объёмах предполагала существенное увеличение транспортных расходов.

Не забудем так же, и то, что газогенераторные грузовики выпускались в основном для тех районов страны, где не было железнодорожных и водных путей для доставки больших партий жидкого топлива. А то, что газогенераторные машины в динамике проигрывали таким же бензиновым вариантам, то 60-80 лет назад, это было не самым главным.

При всех описанных преимуществах газогенераторов, их существенным недостатком являлось то, что для каждого конкретного вида топлива, подчас требовалось и своё отдельное их устройство, хотя и были созданы универсальные многотопливные установки, которые по эффективности проигрывали специализированным. Это ведь не паровозная топка, где всё равно, какой вид топлива сжигать, лишь бы вода в котле превращалась в пар.

Это вам и не корректировка угла опережения зажигания октан-корректором, в зависимости от марки бензина. Напомним читателям достаточно известный исторический факт. Чем ниже степень сжатия обычного карбюраторного двигателя, тем более «всеядным» является мотор. Например, довоенные моторы ЗИС и ГАЗ, со степенью сжатия 4,8 – 5,3 ед., работавшие на А-56, а в жару даже и на керосине, «дожились» и до бензинов А-76 и А-80. Да и доныне на праздниках Победы можно увидеть фронтовые трёхтонки и полуторки, идущие своим ходом.

Работа газогенераторной установки

Работа газогенераторной установки заключалась в превращении твёрдого топлива в газ, который и поступал в цилиндры. Наиболее оптимальным видом топлива для рассматриваемой техники, из древесных топлив являлись дуб и берёза. Лучшим угольным топливом был бурый уголь, как менее гигроскопичный, и дававший большой выход газа.

Типовая газогенераторная установка автомобиля ЗИС-21 показана на рисунке ниже. Она состояла из собственно газогенератора 1, очистителя-охладителя 5, тонкого очистителя 4, смесителя 2, и электровентилятора 3.

В верхнюю часть газогенератора, бункер, загружалось подготовленное топливо, (мелкие древесные чурки, щепа, мелкий уголь). Под бункером располагался топливник, где происходило сгорание топлива. По мере сгорания осуществлялась «автоматическая подача» нового топлива под действием его собственного веса. Газогенератор устанавливался по левому борту грузовика.

В топливнике происходило образование окиси углерода при просасывании воздуха через горящее топливо. Это просасывание, принудительная тяга, обеспечивалась либо за счёт разрежения в цилиндрах работающего двигателя, либо при подготовке генератора к работе и запуску мотора – электровентилятором. Могла быть и естественная тяга, как у обычной печи, но в этом случае растапливание установки и подготовка машины к движению занимали до часа времени.

Ниже топливника, как и в обычной печке, помещался зольник для отходов сгорания, который каждые 70-100 км. пути нужно было чистить. Но кроме, как шофёру такой машины, это больше никому неудобств не доставляло. На дорогах, где работали «паровозы на резиновом ходу», интенсивность движения была раз в час по обещанию, запретов на съезд на обочину везде и всюду, как сейчас, умные гаишники той эпохи ещё не устанавливали, а блюстители экологии тогда ещё и не родились.

Газ из топливника поступал в рубашку, окружавшую бункер, чем обеспечивался подогрев топлива в бункере, для его просушки. При выходе из генератора, газ имел достаточно высокую температуру, 110-140 градусов, поэтому проходил через секции радиатора, не только снижая температуру, но и очищаясь там же от тяжёлых механических примесей. Не забудем, что засасываемый буквально из-под колёс наружний воздух, не имел на своём пути никаких фильтров. Кроме того, и при сгорании происходит унос мелких частиц не сгоревшего топлива.

Как происходила очистка? Секции очистителя-теплообменника имели внутренние перфорированные трубы, наподобие устройства обычных глушителей выхлопных систем. Горячий газ расширяясь терял скорость течения, проходя через лабиринты ещё больше тормозился, а примеси отсеивались и оставались на внутренних поверхностях наружных труб теплообменников. Далее газ очищался в так называемом тонком очистителе, («колонна» по правому борту автомобиля), имевшем две последовательные ступени очистки, и работавшем по принципу обычного «сухого» воздушного фильтра карбюратора.

В смесителе, выполнявшем обязанности карбюратора, готовилась газо-воздушная смесь, которая и поступала в цилиндры.

Классификация газогенераторов

Газогенераторы классифицировались по процессу газификации, по методу подвода воздуха для горения топлива и по виду применяемого топлива.

По процессу газификации имелось разделение на работу прямым, обратным, и горизонтальным процессами. При прямом процессе воздух под действием разрежения проходил снизу вверх, как у обычной печи, и образовывал газовое топливо. Едва ли нынешнему читателю могут быть интересны химические формулы – «выкладки» процесса газификации, которые обязательно давались в технической литературе по таким установкам. Поэтому мы и не будем навеивать ему воспоминания, про «школьные годы чудесные» с уроками химии.

У генераторов прямого процесса существовал серьёзный недостаток. В подготовленном газовом топливе присутствовали пары смол, которые, попадая в цилиндры, «забивали» поршни, кольца, клапаны… Дальше думаем, можно не продолжать.

Газогенераторы с обратным процессом существенно уменьшали недостаток устройств, описанных выше. Здесь наружный воздух поступал сразу в зону горения, а затем, за счёт разрежения, опускался вниз. И образовывавшиеся при перегонке смолы сгорали, или разлагались, образуя горючие газы.

Создание газогенераторов с горизонтальным процессом имело целью снижения высоты установок и центров тяжести порожних машин. Подобные установки были бы актуальны в первую очередь для легковых автомобилей. Но они обладали вышеназванными недостатками генераторов прямого процесса, а потому на грузовиках ЗИС и ГАЗ применения не нашли.

По методу подвода воздуха в газогенераторы, думается никого из нынешних читателей такие тонкости — подробности не интересуют. На знание общего устройства и принципов работы газогенераторных установок, отсутствие такой несущественной дополнительной информации не повлияет. Отметим лишь тот достаточно очевидный факт, что в зависимости от мест и направлений подвода воздуха, добивались разных температур горения топлива. А это в свою очередь влекло за собой применение специальных жаропрочных сталей, а то и дополнительного охлаждения водой от штатных систем охлаждения моторов.

По виду применявшегося топлива автомобильные газогенераторы подразделялись на три вида. В установках для древесного топлива, использовалось дерево в разных видах – мелкие наколотые поленья, щепа. В угольных газогенераторах применялись древесный, бурый, каменный уголь и антрацит. Торфяные установки предназначались только для торфа в кусках или брикетах.

Приведённые ниже чертежи устройств подтверждают то, что установки изготавливались в зависимости от температур горения, характеристик процессов, и интенсивности золо — и шлакообразования. А также и то, что для эксплуатации на непредназначенных для них видах топлива, они могли быть малопригодны, если не вообще непригодны.

Выработанный газ нужно было охлаждать ещё и для того, чтобы улучшать наполнение цилиндров, и тем самым избегать лишней потери мощности моторов. Охладители, (по терминологии того времени), газа были известны двух основных типов, трубчатые и радиаторные. Трубчатые охладители применялись на ЗИС-21, а так же и машинах ГАЗ-42, выпускавшихся до 1944 года. Такие охладители работали на принципе конвекции, а потому были достаточно объёмными, и вынуждено крепились к раме под кузовом.

Радиаторные охладители значительно более эффективные, лёгкие и компактные. Они устанавливались перед обычными радиаторами систем охлаждения, и не только обдувались набегающим встречным потоком воздуха, но и «просасывались» вентилятором. В активе таких теплообменников ещё и то преимущество, что значительно уменьшалась общая длинна всех трубопроводов установки, снижалось их сопротивление проходу газа, и несколько повышалась мощность моторов за счёт улучшения наполнения цилиндров.

Выше уже было некоторое упоминание об очистке газа, когда рассматривалось общее устройство газогенераторной установки. Но сейчас нужно вернуться к этому несколько подробнее.

Известны три разновидности газовых очистителей — динамические, поверхностные и жидкостные. Динамическими (инерционными) очистителями на советских грузовиках, являлись уже упоминавшиеся очистители-охладители первой ступени. Поверхностными очистителями являлись упомянутые уже «колонны» по правому борту, имевшие свои, две последовательные ступени более тонкой очистки. Однако на машинах ГАЗ-42, с 1944 года нашли применение жидкостные радиаторные очистители – охладители. Исчезли «колонны» по правому борту и большие подкузовные секции охладителей.

Суть этих нововведений в следующем. Газ имел две последовательные ступени охлаждения и очистки. При каждой ступени он проходил через соты воздушного охлаждения, а потом через слой воды, являвшийся и фильтром, и непосредственным дополнительным контактным охладителем. После чего и поступал в смеситель.

Смесители газогенераторных установок

Смесители газогенераторных установок по своему принципу действия были прямыми аналогами обычных бензиновых карбюраторов, но значительно проще по устройству и безотказнее в работе. Ибо не имели забивающихся жиклёров и тонких каналов регулировки холостого хода, негерметичных топливных клапанов и поплавков. Не требовалась и их регулировка в «карбюраторном» понимании, ни уровня в поплавковой камере, ни винтами качества и токсичности. Конечно, были регулировки приводов воздушных и дроссельных заслонок. Но возможные ошибки при таких регулировках, ни к экономичности, ни к экологии, никакого отношения не имели.

Смесители служили для приготовления газо-воздушной смеси на всех режимах работы двигателя. Поскольку они, в отличие от карбюраторов, не имели, разумеется, никаких ускорительных насосов, то и динамика разгона у газогенераторного ЗИСа или «газона», едва ли была намного лучше, чем у паровоза. Тем более, и с учётом вышеупомянутой потерей мощности, в сравнении с бензиновыми моторами. Но от этих машин в первую очередь требовалась-то возможность работы на «подножном корму». А «гонки по вертикали» в Сталинскую эпоху были не приняты ещё и среди шофёров легковых машин.

Газовые смесители не вытеснили карбюраторов на одних и тех же машинах, а потому допускали работу одного и того же мотора и от газогенератора, и на бензине. Однако продолжительная работа таких машин на жидком топливе не практиковалась. Связано это было с тем, что низкокалорийное газовое топливо требовало повышенной степени сжатия, а в ту эпоху, широко применявшиеся сорта бензинов при степени сжатия газогенераторных моторов, нередко вызывали детонацию. Поэтому работа на бензине использовалась либо при маневрировании на территории автохозяйств, либо как вспомогательная, для создания разрежения в цилиндрах и тяги при розжиге газогенератора. И, как понимает читатель, у газогенераторных грузовиков были две педали акселератора – газовая и бензиновая.

Газовые смесители условно разделялись на три группы:

Смеситель с параллельными потоками газа и воздуха применялся на автомобиле ЗИС-21. У верхнего фланца была расположена дроссельная заслонка, (смеситель, как и карбюраторы на моторе крепился под впускным коллектором), регулирующая количество газо-воздушной смеси. Воздушная заслонка бокового патрубка регулировала состав этой смеси, изменяя подачу свежего воздуха. Генераторный газ поступал через нижний патрубок, и смешиваясь с воздухом над воздушным патрубком, (место слияния потоков показано стрелками), поступал в цилиндры.

Вторая разновидность смесителей – вихревые устройства , применялись на моторах грузовиков ГАЗ-42. Воздух поступал через патрубок 4. При входе в смеситель, он получал вращательное движение, и перемешивался с газом, поступавшем через патрубок3. Качественный состав смеси регулировался заслонкой 1, а количество смеси, подаваемой в цилиндры, — дроссельной заслонкой 2.

Бытовали и смесители с пересекающимися потоками , (как у газогенераторов НАТИ Г-71). Они представляли собой тройник, схема которого «в связке» с карбюратором, наглядно показана на рисунке ниже. Думаем, что читатель сможет самостоятельно провести аналогию назначения заслонок на предложенной схеме. Дроссельная заслонка 1 карбюратора могла использоваться лишь при розжиге генератора.

Пуск двигателя сразу на газе возможен был лишь в том случае, если нормально протекал процесс газификации топлива, обеспечивая подачу газа хорошего качества. А для этого нужно было создать хорошую тягу, обеспечивавшую надлежащие условия для газификации.

При розжиге генератора, как уже было сказано выше, использовалась естественная или принудительная тяга. Для естественной тяги открывали загрузочный люк бункера, и люк зольника, обеспечивая вертикальную тягу, как у самовара. После этого производили растопку, как и у обычной печи. Далее последовательно закрывали сначала зольник, а потом и загрузочный люк бункера. Недостатком розжига естественной тягой, являлась его длительность и загрязнение воздуха печным газом. Достоинством являлось то, что газ имел температуру, близкую к оптимальной, и содержал в себе минимальное количество смол.

Принудительная тяга создавалась разряжением в цилиндрах двигателя, или электровентилятором. С помощью вентиляторов, в частности и запускались газогенераторы машин ЗИС и ГАЗ, при необходимости подготовки их к работе в кратчайший срок. При работе вентилятора, дроссельные заслонки карбюратора и смесителя были закрыты, а газ отводился через «гусь» выпускной трубы вентилятора. «Улитка» вентилятора имела заслонку, отсоединявшую его от газопровода после запуска мотора. Отсасывания газов при розжиге генератора разряжением в цилиндрах двигателя проводилось лишь в крайнем случае, при неисправности вентилятора или невозможности его длительной работы при плохо заряженной АКБ, когда требовался скорейший запуск генератора в работу.

Поскольку при таком способе, когда нормальный процесс газификации ещё не установился, неизбежными были попадания большого количества золы и смол в цилиндры. Карбюраторы включались во впускную систему двигателя параллельно со смесителями, или последовательно. Но второй способ большого распространения не получил, поскольку патрубки и диффузоры бензинового прибора питания, оказывали лишнее сопротивление проходу газо-воздушной смеси в цилиндры. А лучшие результаты дало последовательное включение специального автоматического (!) пускового устройства, уменьшавшего подачу бензина во впускной трубопровод, по мере перехода на газ.

Для пуска двигателя на бензине, закрывалась газовая заслонка 7, воздушная 6 и дроссельная заслонка 5. Посредством дистанционного привода из кабины, поворачивался рычаг 2, открывался топливный кран 1, и поворачивалась шайба 4. Под действием разряжения в цилиндрах, автоматически открывался клапан 3. Бензин подавался через жиклёр 9, кран 1 и клапан 3, и смешиваясь с воздухом, поступавшим через жиклёр 8, проходил через отверстие в шайбе 4 в задроссельное пространство и в цилиндры. Далее, по мере открытия дроссельной заслонки 5, и уменьшения разряжения во впускном коллекторе, клапан 3 закрывался, и прекращал подачу жидкого топлива. Такая система значительно упрощала перевод работы мотора с бензина на газ. Однако, в этом случае, движение автомобиля на бензине, даже в крайне необходимых случаях вряд ли было возможным.

При переводе обычного карбюраторного двигателя на питание генераторным газом, его мощность снижалась на 35-40%. Это вызывалось низкой теплотворной способностью газогенераторного топлива, высокой температурой газо-воздушной смеси, исключавшей хорошее наполнение цилиндров, и значительным сопротивлением проходу газа по всем трубопроводам специальной установки. А потому, приспосабливание бензинового мотора для работы на газе, сводилось к следующим мерам:

  1. Увеличивалась степень сжатия, так как газ в этом случае допускал работу без детонации.
  2. Увеличивались углы опережения зажигания, так как газо-воздушная смесь горит медленнее бензиново-воздушной смеси.
  3. Уменьшались зазоры между электродами свечей с 0,6-0,8 до 0,3-0,4 мм, так как при увеличении степени сжатия, увеличивалось и сопротивление искровому разряду. Однако напомним читателям, что вновь вернулись к первым названым параметрам более современных бензиновых моторов лишь тогда, когда было повышено напряжение в бортовой сети с 6 до 12 вольт, и появились другие катушки зажигания.
  4. Увеличение степени сжатия потребовало более мощных стартёров, а те, в свою очередь — АКБ повышенной ёмкости.

А перечисленное в пунктах 1,2,3, думаем, даёт ясное понимание того, почему на таких машинах бензин, для обычного движения, был газу не ровня. Однако, просим не путать смену режимов «газ/бензин» у газобаллонных автомобилей. Эта ария уже из другой оперы.

Главным недостатком газогенераторных установок с позиций того времени явились больший вес и объём возимого топлива. Ибо 1 литр бензина был эквивалентен 3 кг. древесных чурок или 1,7 – 2 кг древесного угля.

Мы имеем возможность предложить для сравнения и специфические характеристики газогенераторных машин ЗИС-21 и ГАЗ-42

Автомобиль ЗИС-21: грузоподъёмность 2, 5 т, макс. скорость 45 км/ч

При степени сжатия 7,0, двигатель развивал 45 л.с. при 2400 об./мин. и крутящий момент 20 кгм при 900-1100 об./мин. Газогенераторная установка обратного процесса газификации, рассчитанная на древесные чурки. Возимый запас/расход топлива – 100 кг. Максимальный запас хода по топливу на шоссе -95 км. Имелась разновидность машины ЗИС-Г69 для работы на древесных чурках, торфе, с расходом 120 кг./100 км., и на буром угле, 150 кг./100 км.

Бензобак в моторном отсеке с подачей самотёком. Главная передача от автобуса ЗИС-16, с числом 7,67. Электрооборудование 12 вольт, АКБ 6СТ-144, 2 шт. генератор автобусный, от ЗИС-8, мод.ГА-27, 20А. 250 вт., стартер автобусный МАФ-31, мощностью 1,5 л.с. Кстати, из упомянутой ниже книги следует, что все газогенераторные машины ЗИС имели зажигание от магнето, автономного источника импульсов высокого напряжения, заменявшего собой катушку зажигания и прерыватель-распределитель.

Автомобиль ГАЗ-42: грузоподъёмность 1,2 т., макс. скорость 50 км/ч

При степени сжатия 6,5, мощность составляла 30 л.с. при 2400 об/мин. и крутящий момент 11 кгм при 1200 об/мин.

Газогенераторная установка обратного процесса газификации, для древесных чурок. Имелась разновидность машины ГАЗ-Г59У, для работы на древесных чурках, торфе, и буром угле. Расход топлива на 100 км – 60 кг. древесных чурок для ГАЗ-42 и ГАЗ-Г59У, 75 кг. торфа, или 60-90 кг бурого угля, для последней разновидности машины.

Главная передача с числом 7,50. Электрооборудование 6 вольт, АКБ 3СТ-112

ТТХ газогенераторных автомобилей даны по книге «Эксплуатационно-технические характеристики автомобилей», Издательство Минкомхоза РСФСР, 1954 г.

Заключение

Что сказать в заключение? Проведена самая отдалённая, пусть даже косвенная аналогия между газогенераторным грузовиком и паровозом. Ведь автомобильный двигатель внутреннего сгорания, и паровая машина локомотива – это близкие разновидности кинематически одинаковых тепловых двигателей. Ибо в обеих случаях возвратно-поступательные движения поршней, служат одной и той же конечной цели – вращательному — на ведущие колёса, — переключением пар шестерён в КПП грузовика, или изменением времени отсечки, (степени наполнения паром цилиндров машины), — для данного случая работы силовых установок, думаем не принципиально.

Работа же шофёра газогенераторной машины, отчасти была схожа с работой паровозной бригады из трёх человек. Обязанности по управлению и обслуживанию паровоза в поездке, делились между машинистом, (управление движением и обзор пути с правого «крыла»), его помошником, (отопление паровоза и обзор пути с левого «крыла»), и кочегаром, (подача топлива из тендера в будку, подмена при необходимости помошника на отоплении и вспомогательные обязанности). В случаях же плановых или вынужденных остановок поезда, обслуживание — манипуляции маслёнками, нагнетателями и гаечными ключами, делилось между паровозниками поровну, не взирая на «табели о рангах». А шофёр газогенератора, один был, по поговорке, «И швец, и жнец, и на дуде игрец». И управление автомобилем, и загрузка бункера, и «шуровка» топки, и очистка зольника, а если надо, — то и заготовка в пути недостающего топлива… Шофёрам обычных бензиновых ЗИС-5 или ГАЗ-51, такое, наверное, и в страшных снах не снилось.

Возможно, шофёрам газогенераторных машин и полагались надбавки при оплате труда за совмещение обязанностей, — и за «помошника машиниста», и за «кочегара». Но были ли они в действительности – мы утверждать не можем. А что наиболее достоверно, так то, что привилегией этих водителей была почти постоянная работа на природе, вдали от шума городского…

Эксплуатация газогенераторных машин ЗИС и ГАЗ давно уже стала достоянием истории. Как постепенно уходят в прошлое и карбюраторные системы питания – более простые, надёжные, дешёвые и ремонтопригодные, в сравнении с «электронно-инжекторными наворотами». Но какой суммарный грузооборот имели все газогенераторные грузовики за почти три десятилетия их эксплуатации – не подсчитать уже никому…

Автомобиль на дровах, миф или реальность? И можно ли сделать такое авто своими руками? Давайте разберемся.

Глядя на таблички АЗС с ценами на бензин, то и дело возникает желание перевести авто на более дешевый вид топлива.

Один из популярных вариантов - переделка автомобиля на газ. Но и здесь не все гладко. На фоне событий в газовой и нефтяной сфере газ может подорожать, что сделает работу бессмысленной.

Проблемы с энергоресурсами налицо и еще никто не знает, чем это закончится для конечного потребителя.

Если уж и решаться на переделку, то стоит выбирать независимые и по-настоящему эффективные способы. И здесь на первое место по экономии выходят газогенераторные автомобили или по-простому - «машины на дровах».

История создания и развития, примеры авто на дровах

Несмотря на медленное продвижение темы газогенераторных машин, история таких разработок весьма богатая. Так, еще в 1823 году российский изобретатель Овцын И.И. разработал аппарат для перегонки древесины. В его основу легла самая обычная «термолампа».

Главной особенностью установки стало применение в ней главных продуктов пиролиза - светильного газа, уксусной кислоты и дегтя, а также древесного угля.

Почти через сорок лет (в 1860 году) свой вклад в науку сделал Этьен Ленуар - бельгийский официант с инженерными «наклонностями». Именно он первым приобрел патент на ДВС, функционирующий на светильном газе.

Но он занимался не только этими разработками.

Еще через два года установка новоиспеченного гения появилась на 8-местном открытом омнибусе.

Но в 1878 году, когда публике был представлен более мощный 4-тактный двигатель на газе Николаса Отто, разработка Этьена Ленуара быстро забылась. При этом у нового устройства был более высокий КПД: 16% у Отто против 5% у Ленуара.

Еще через два десятка лет, в 1883 году (от 1860 года), появилась новая концепция сочетания обычного ДВС и газогенератора.

Английскому ученому Э. Даусону удалось объединить два устройства в одной коробке.

Получившийся аппарат можно было смело устанавливать на любую технику и спокойно эксплуатировать. Со временем разработка Э. Даусона получила название «газа Даусона».

В 1891 году отличился Яковлев Евгений (лейтенант Российского флота). Ему удалось выстроить целый завод по производству керосиновых и газовых моторов. Местом для строительства стал Санкт-Петербург.

Со временем завод прекратил существований из-за невозможности устоять в конкуренции с бензиновыми и дизельными моторами.

1900-й можно смело назвать годом выпуска первого газогенераторного автомобиля, использующего древесный уголь и дерево в виде топлива.

Аппарат был разработан во Франции Фредериком Уинслоу Тейлором, а патент удалось получить немного позже (в 1901 году).

В последующем появлялись все новые и более интересные разработки в данной сфере. Так, в 1919 году Георг Имберт (инженер французского происхождения) разработал газогенератор обращенного типа.

Уже в 1921 году появились первые автомобили с моторами, работающими на данном принципе. Именно тогда возникли предположения о вероятной конкуренции газогенераторного авто с дизельными или бензиновыми моторами.

Со временем отличилась и Германия, где в период войны получили распространение не только дровяные газогенераторы, но и устройства, способные работать на специальных брикетах, состоящих из буроугольной пыли и крошки.

Первые грузовые авто с газогенераторами были весьма медлительными - им едва ли удавалось достичь скорости в 20 километров в час.

Несмотря на это, к 1938 году популярность газогенераторных авто была настолько большой, что общее число таких машин насчитывалось около девяти тысяч.

Еще через три года (к 1941 году) их число возросло еще в пятьдесят раз. К примеру, в той же Германии количество машин «на дровах» выросло до 300 тысяч экземпляров.

Старался не отставать и Советский Союз. Здесь первые испытания газогенераторных авто прошло в 1928 году. В машине был задействован мотор Наумова и шасси Фиат-15.

Еще через шесть лет был организован первый большой пробег машин с газогенераторными моторами от Москвы до Ленинграда и обратно.

В «забеге» принимали участие автомобили ЗИС-5 и ГАЗ-АА. Успех мероприятия послужил принятию в 1936 году специального постановления СНК СССР о разработке газогенераторных тракторов и машин.

Первая партия новых газогенераторных машин появилась на дорогах СССР в 1936 году.

Производство осуществлялось на двух заводах - Горьковском (ГАЗ-42) и на ЗИС (заводе имени Сталина).

Спустя пять лет был налажен выпуск газогенераторных моторов для тракторов и машин ЗИС.

К недостаткам силовых узлов можно было отнести множественные заводские дефекты, высокую скорость износа металла, минимальную мощность и так далее.

С другой стороны, газогенераторные установки очень помогли в войну и активно применялись в тылу.

Газогенератор на дровах для автомобиля – устройство и принцип работы

В состав автомобильной газогенераторной установки входят следующие элементы:

  • грубые очистители;
  • сам газогенератор;
  • тонкие очистители;
  • смеситель и вентилятор розжига.

Простая схема выглядит так.

Во время движения воздух засасывается в газогенератор с помощью тяги работающего мотора.

Эта же тяга способствует «выкачиванию» горючего газа из газогенератора, а также его подачу к грубым очистителям, а после к фильтру тонкой очистки.

После перемешивания с воздухом в смесителе готовая газовоздушная смесь засасывается в цилиндры мотора.

После выхода из газогенератора раскаленный и загрязненный газ требует дополнительной обработки (охлаждения и очистки).

Для этого он пропускается через специальный трубопровод, объединяющий газогенератор с фильтром тонкой очистки.

В некоторых конструкциях газ проходил через специальный охладитель, смонтированный перед водяным радиатором.

Чаще всего для охлаждения и очистки применялась комбинированная система.

Ее принцип действия заключался в изменении скорости и направлении движения потока газа. Одновременно с этим производилось охлаждение и очистка последнего.

Следующий этап - тонкая очистка, для которой использовались специальные «кольцевые» очистители, выполненные в форме цилиндров.

Принцип работы большинства фильтров тонкой очистки строился на водяном принципе, когда очистка газа осуществлялась посредством воды.

В процессе розжига газогенератора применялся специальный центробежный вентилятор, оборудованный электрическим приводом.

Из-за того, что вентилятору необходимо прокачивать воздух через всю очистную систему, монтаж устройства производился в максимальном приближении к смесителю.

Формирование горючей смеси производится в смесителе автомобиля.

Наиболее простой тип устройства представляет собой специальный тройник, в котором пересекаются потоки воздуха и газа.

Объем поступающего в мотор состава контролируется с помощью заслонки дросселя.

Качество газо-воздушной смеси регулируется посредством воздушной заслонки.

Принцип работы.

Основным топливом для газогенераторной установки являются угольные брикеты, торф или дрова.

Принцип действия системы построен на частичном сгорании углерода. Последний во время сгорания может подсоединять один или пару атомов кислорода с последующим образованием двух элементов - углекислого газа (диоксида) и угарного газа (монооксида).

Если же углерод сгорает не полностью, то можно получить почти 30% от общей энергии при полном сгорании материала.

Как следствие, образованный газ имеет более низкую теплоотдачу чем первоначальное твердое топливо.

Стоит отметить, что в газогенераторе в период преобразовании дерева или угля в газ происходит экзотермическая реакция, возникающая место между водой и монооксидом углерода.

Благодаря такой реакции, температура полученного газа падает, КПД возрастает до 80 процентов.

Если газ не требует охлаждения перед применением, то КПД может достигать 100%. Как следствие, происходит 2-х стадийное сжигание топлива.

Полученный газ имеет минимальную калорийность, благодаря его смешиванию с азотом.

Из-за того, что для сжигания топлива необходимы меньшие объемы воздуха, то подобное снижение калорийности несущественно.

Что касается снижения мощности мотора при работе на газу, то причиной является снижение заряда топливного состава, вызванного сложностью охлаждения.

Автомобиль на дровах своими руками

При желании автомобиль на дровах можно сделать и своими руками.

В упрощенном варианте алгоритм выглядит следующим образом:

1. Оборудуется бункер загрузки.

В качестве основы можно использовать обычный газовый баллон емкость около 40-50 литров. Благодаря такой вместительности, в баллон можно будет поместить большие объемы угля.

Можно использовать и другие материалы.

Проследите, чтобы толщина стенок была не менее трех миллиметров.

Как только подходящий баллон подобран, вырезайте в нем днище и прорезайте горловину для загрузки топлива. Отверстие для крышки должно быть широким, чтобы упростить процесс загрузки горючего.

2. Изготавливается колосниковая решетка, которая берет на себя наибольшую нагрузку.

3. Создается специальная крышка для бункера.

Через нее будет производиться загрузка топлива (угля). При желании крышку можно сделать из алюминия, но теоретически допускается использование любого другого вида металла.

В процессе монтажа уделите внимание выбору шнура - он должен быть асбестовым с обязательной пропиткой графитом.

Это необходимо для защиты шнура от пригорания и случайного повреждения в случае закрытия или открытия.

Достать качественный шнур можно на рынке или в котельной. Оптимальный диаметр подходящего шнура - 13 и 8 миллиметров.

4. Делается фурма.

Задача данного устройства - взять на себя основную температурную нагрузку. В процессе монтажа все делается таким образом, чтобы было проще произвести замену.

5. Изготавливается фильтр циклон.

Применение древесного или бурого угля, торфа, соломы или прочих веществ для поездок на автомобиле имеет характерную особенность - наличие пыли.

Если не сделать качественный фильтрующий элемент, то пыль может попасть в карбюратор, поршни, свечи и прочие узлы (в том числе и в салон).

Можно найти сразу готовое решение.

6. Изготовление радиатора (охладителя).

Здесь может применяться любой материал. Как вариант, допускается применение стандартного радиатора отопления, выполненного из алюминия.

Можно сконструировать устройство из водопроводных труб. При этом учтите, что сечение радиатора, как правило, немного больше сечения подключенных к нему труб.

А точнее, совсем не оружие. В наше время сложно представить армию без тысяч транспортных средств как на передовой, так и в тылу. В годы Великой Отечественной все было точно так же.

Сегодняшний рассказ об автомобиле, который довольно часто можно было встретить в тылу. Бензин и дизтопливо, кровь войны, шли в первую очередь на фронт. А в тылу можно и нужно было ездить на том, что есть под рукой. И тут газогенератор весьма пригодился.

Итак, газогенераторный автомобиль ЗИС-21.

Выпускался с 1938 по 1941 годы, всего было произведено 15 445 единиц.

ЗИС-21 представлял собой стандартный грузовик ЗИС-5 с газогенератором типа НАТИ Г-14. Газогенераторная установка ЗИС-21 изготавливалась на московском заводе «Комета». Её полная масса составляла 440 кг. Высота бункера 1360 мм, диаметр - 502 мм. Вес топлива в бункере - 80 кг.

Топливом могли служить деревянные чурки, брикеты из стружек и опилок, отходы от распиловки, угольные и торфяные брикеты и даже шишки.

Суть газогенератора проста на первый взгляд. При неполном сгорании топлива получается смесь водорода и окиси углерода (СО). Все это фильтруется, охлаждается и поступает в камеры сгорания. КПД процесса достигает 75-80% и на двигателях, специально изменённых или специально разработанных для работы на генераторном газе, посредством повышения степени сжатия и незначительного наддува газогенератора, достигаются почти равные с бензиновыми двигателями мощности.

Плюс в странах, где нет проблем с лесами, - заправки на каждой поляне. Главное - сухое топливо и отсутствие гнили.

Газогенератор монтировался с правой стороны кабины и крепился к правому лонжерону рамы при помощи кронштейнов. Правую дверь пришлось сделать в два раза меньше, чтобы не сокращать кузов. Но пассажиры тут не главное, главное - груз.

Так как газогенератор, монтировавшийся с правой стороны автомобиля, имел массу больше 400 кг, у ЗИС-21 была усилена правая передняя рессора - ставились листы толщиной 8 мм вместо штатных 6,5 мм.

Охладители-очистители грубой очистки и охлаждения газа, состоящие из трёх цилиндров, последовательно соединённых между собой, располагались поперёк машины позади кабины под грузовой платформой.

С левой стороны автомобиля у кабины устанавливался фильтр тонкой очистки цилиндрической формы высотой 1810 мм и диаметром 384 мм. Для розжига газогенератора устанавливался центробежный вентилятор с приводом от электромотора. На автомобилях выпуска 1938 года вентилятор крепился к кронштейну правой подножки, а на ЗИС-21, выпущенных с 1939 года - к левой подножке автомобиля.

Для ускоренного запуска двигателя и для коротких перемещений под капотом устанавливался бензобак ёмкостью в 7,5 л.

Газогенераторный ЗИС-21 имел следующие характеристики:

Двигатель 6-цилиндровый, рядный, объемом 5555 см3, мощностью 73 л.с. На газе, правда, мощность падала до 50 л.с., но это отражалось на скорости, а не грузоподъемности.

Максимальная скорость на бензине была 60 км/ч, на газе - 48 км/ч.

Грузоподъемность 2 500 кг, минус запас топлива.

Одной зарядки бункера хватало на 60-100 км пробега в зависимости от типа заряжаемой древесины.

Конечно, «газгены» использовались не от хорошей жизни. Тем не менее, во время войны они освободили значительную часть бензина для нужд фронта. От Колымы до Урала тысячи «газенов» перевозили сотни тысяч тонн грузов, пыхтя своими генераторами. И перевезли вовремя, если судить по результатам.

Кстати, в Европе (Англия, Франция, Германия) тоже вполне нормально использовали газовые генераторы даже на легковых автомобилях. Но это уже совсем другая .

Источники:
Музей военной истории, с. Падиково Московской области.
http://dic.academic.ru/dic.nsf/ruwiki/1376554.