Субъективный и объективный поиск отказов. Субъективные и объективные причины отказов отказ событие заключающееся. Диагностирование рулевых управлений

Основные положения технической диагностики

Основные определения технической диагностики

Диагностические параметры технического состояния машин и их составных частей

Перечислите требования к информации, чтобы она давала основания для принятия решений.

11. Поясните, что является основным источником информации о надежности автомобилей.

12. Перечислите методы повышения надежности изделий.

13. Поясните понятие «резервирование» в изделии.

14. Поясните понятия «нагруженный, облегченный и ненагруженный резерв».

Раздел 4. Основы диагностики

Возможность определения технического состояния объекта, не разбирая его по косвенным признакам, так называемым диагностическим симптомам, составляет сущность технической диагностики.

Для принятия персоналом инженерно-технической службы автомобильного транспорта эффективных решений по оперативному управлению производственными процессами технической эксплуатации автомобилей возникает необходимость в использовании достоверной информации о техническом состоянии каждого отдельно взятого автомобиля. Основными источниками этой информации на автомобильном транспорте являются технический контроль, включающий в себя осмотр и инструментальное диагностирование.

Обнаруженные неисправности – событие, при котором наличие неисправности становится очевидным.

Локализация неисправности – действия, направленные на идентификацию неисправной составной части или нескольких составных частей на соответствующем уровне разукрупнения.

Диагностирование неисправности – действия, проводимые с целью установления наличия неисправности, локализации неисправности и определения причин ее появления.

Устранение неисправности – действие, проводимые после диагностирования неисправности для восстановления работоспособного состояния изделия.

Проверка функционирования – действия, проводимые после устранения неисправности для подтверждения работоспособного состояния изделия.

Восстановление – событие, при котором после неисправности наступает работоспособное состояние изделия.

Контроль состояния – операции выполняемые автоматически или вручную с целью определения и квалификации состояния изделия.

Контроль состояния используют для установления потребности в техническом обслуживании.

Время обнаруженной неисправности – интервал времени между отказом и обнаружением возникшей из-за него неисправности.

Время устранения неисправности – часть оперативной продолжительности корректирующего технического обслуживания, потраченная на устранение неисправности.

Время проверки функционирования – часть оперативной продолжительности технического обслуживания, потраченная на проверку функционирования.



Время обнаружения неисправности – часть оперативной продолжительности корректирующего технического обслуживания, потраченная на обнаружение неисправности.

Время локализации неисправности – часть оперативной продолжительности корректирующего технического обслуживания, потраченная на локализацию неисправности.

В соответствии с принятой терминологией под техническим контролем в сфере производства понимается проверка соответствия продукции установленным техническим требованиям. Технический контроль появился в результате разделения труда как необходимая составная часть технологического процесса материального производства.

На современном этапе развития производства технический контроль выполняет две основные функции: выявление и отбраковка продукции, не соответствующей требованиям технических условий; получение дополнительной информации о производственном процессе и его результатах для выработки управляющих воздействий, направленных на поддержание заданного уровня качества продукции. При этом необходимо чтобы получение указанной информации было доступным, не требовало разборки агрегатов и механизмов и больших затрат труда.

На первых этапах развития специфика производственных процессов технической эксплуатации автомобилей, характеризующихся высокой степенью неоднородности, определила возможность применения на АТП в основном субъективных методов определения технического состояния автомобилей при осмотре квалифицированным персоналом. Однако с ростом мощности автотранспортных предприятий в связи с проводимой технической политикой, направленной на концентрацию производства, процесс управления работоспособностью подвижного состава становился все более сложным, а требования к индивидуальной информации повышались.

В связи с этим на автомобильном транспорте появилась и начала развиваться техническая диагностика, поначалу называемая просто контролем, способствующая повышению производительности труда ремонтных рабочих, надежности и безопасности движения автомобилей, снижению трудоемкости работ, экономии топливно-энергетических и материальных ресурсов.

Техническая диагностика автомобилей - раздел эксплуатационной науки, в котором изучаются, устанавливаются и классифицируются отказы и неисправности агрегатов и узлов, а также симптомы этих отказов и неисправностей. Также здесь разрабатываются методы и средства (аппаратура) для их выявления с целью определения необходимых профилактических и ремонтных воздействий на объект для поддержания высокого уровня его надежности и прогнозирования ресурса его исправной работы.

В теории надежности автомобиля разработаны общие методы, позволяющие установить вероятность возникновения отказов в группе (статистической совокупности) однотипных автомобилей, однако без указания как будет «вести» себя каждый конкретный автомобиль в этой группе, т. е. когда именно в нем возникнут те или другие отказы.

Методы же и средства технической диагностики позволяют определить техническое состояние вполне конкретного автомобиля и поэтому дают возможность реализовать потенциальную надежность, заложенную в данный конкретный автомобиль.

Диагностирование - процесс определения и оценки технического состояния объекта без его разборки по совокупности обнаруженных диагностических симптомов (постановка технического диагноза) и ресурса его исправной, безотказной работы.

Диагностирование включает в себя три основных этапа: фиксация отклонений диагностических симптомов и параметров от их номинальных значений; анализ характера и причины возникновения этих отклонений; установление величины ресурса исправной работы.

Второй этап представляет собой постановку технического диагноза или выдачу диагностического заключения.

Оценку технического состояния изделия производят по схеме (рис. 18).

Рис. 18. Схема определения технического состояния изделия

Технический диагноз - определение и оценка технического состояния, т. е. сущности и степени неисправности, наличия отказа объекта диагностирования и пригодности его к дальнейшей работе.

Диагноз ставится путем выявления всеми доступными оператору методами симптомов неисправного технического состояния, определения без разборки текущих значений диагностических параметров объекта и методического их сопоставления с допустимыми отклонениями от нормального уровня (номинала), соответствующего техническим условиям и другим техническим документам.

Теория и практика технической диагностики автомобиля и его агрегатов и узлов основываются на проверенном экспериментально факте зависимости значений выходных характеристик и параметров объекта от значений его структурных параметров, т.е. от технического состояния объекта диагностирования.

Выходные процессы работающего объекта – это физические и химические процессы, которые возникают и протекают во времени при работе объекта, при его функционировании и взаимодействии с внешней средой, и которые проявляются во вне объекта, т. е. могут наблюдаться и фиксироваться. Например, двигатель внутреннего сгорания вырабатывает энергию, поглощая в то же время подаваемое в него топливо и воздух, нагревается, выбрасывает отработавшие газы, создает определенный шум, в большей или меньшей степени вибрирует.

Выходные процессы любого объекта разделяются на:

1) рабочие процессы, которые определяют собой рабочие его функции, ради выполнения которых изготовлен данный объект (например, у двигателя - это потребление топлива и эксплуатационных материалов, выработка энергии, выброс отработавших газов; у коробки передач - это передача и преобразование крутящего момента);

2) сопутствующие процессы, т.е. неизбежные, но возникающие попутно с рабочими, и бесполезные (например, вибрации, стуки, тепловыделение и др.) самого разнообразного характера.

Рабочие и сопутствующие выходные процессы обладают определенными характеристиками и параметрами, которые могут быть измерены.

Так, развиваемая мощность и величина расхода топлива на том или ином скоростном режиме характеризуют рабочий процесс двигателя, т. е. процесс выработки энергии; амплитуда и частота вибраций любого агрегата трансмиссии, температура нагрева подшипника, характер и сила стуков в двигателе и другие параметры характеризуют сопутствующие процессы в этих агрегатах.

Из анализа связи и зависимости характеристик и параметров выходных процессов простейшего узла - подшипника скольжения от его структурных параметров видно, что характер взаимодействия структурных элементов (цапфы и подшипника) зависит от значений структурных параметров (главным образом от радиального зазора). С изменением последних например, с увеличением зазора вследствие износа, происходит изменение взаимодействия цапфы, вала и подшипника, - вместо плавного вращения цапфы в подшипнике появляются радиальные и продольные ее перемещения, которые вызывают вибрации подшипника, стуки и нагрев. Возникают сопутствующие выходные процессы со своими характеристиками и параметрами, которые могут наблюдаться и замеряться извне. «Обратная связь» этих параметров со структурными, т.е. определение значений структурных параметров по величине параметров выходных процессов, и является сущностью постановки диагноза или сущностью технической диагностики.

Техническая диагностика машин и, в частности, автомобилей сравнительно молодая область знаний, которая находится в стадии своего формирования и становления.

Объектами ее могут быть узлы и механизмы автомобиля, отвечающие хотя бы двум условиям находиться в двух взаимоисключающих состояниях - работоспособном и неработоспособном, в них можно выделить элементы (детали), каждый из которых тоже характеризуется различными состояниями.

Диагностику технического состояния автомобилей определяют как отрасль знаний, изучающую и устанавливающую признаки неисправного состояния автомобиля, а также методы, принципы и оборудование, при помощи которых дается заключение о техническом состоянии узла, агрегата, системы без разборки последних и прогнозирование ресурса их исправной работы.

Под системой понимается упорядоченная совокупность совместно действующих объектов, предназначенных для выполнения заданных функций.

В качестве системы могут выступать автомобили, агрегаты, люди, процессы, связанные определенной целью.

Элемент принадлежит системе и выполняет в ней заданные функции.

Одним из основных понятий диагностики является понятие «отказа», под которым понимается событие, заключающееся в нарушении работоспособности объекта.

Любой автомобиль может быть оценен рядом параметров , одни из которых являются основными , другие второстепенными .

Под параметром понимается качественная мера, характеризующая свойства системы, элемента или явления, в частности процесса.

Значение параметра - количественная мера параметра.

Каждый автомобиль обладает вполне определенной структурой, т.е. взаимной связью и взаимным расположением составных элементов, характеризующих конструктивные особенности системы.

Хотя структура системы в целом остается неизменной, отдельные сопряжения этой системы вследствие износов и других явлений изменяют свои размеры, например, увеличиваются зазоры в подшипниках и т.д.

Показателями, характеризующими свойство структуры системы или ее элементов, выступают структурные параметры, отражающие качественную сторону зазоров, прогибов, износов, пробоев и т.д.

Структурные параметры могут быть основными и второстепенными.

Основные параметры - характеризуют возможность выполнения системой заданных функций, второстепенные - удобство в эксплуатации, внешний вид (удобство управления, обслуживания, разборки, сборки) и др.

Входные параметры - качественная мера воздействия на систему извне, а выходные характеризуют внешнее проявление свойства системы.

К входным параметрам относят нагрузку на автомобиль, дорожные, климатические и другие условия.

Выходные параметры - мощность двигателя, расход топлива, частота вибрации элементов трансмиссии, усилия торможения автомобиля и др.

Выходные параметры существенно зависят от состояния структуры объекта и меняются с изменением структурных параметров последнего.

Например, увеличение зазора в коренных и шатунных подшипниках коленчатого вала понижает давление смазки в системе, порождает шум и стуки.

Параметры выходного процесса могут стать диагностическими признаками при условии однозначности, где каждому значению структурного параметра соответствует только одно, вполне определенное значение параметра выходного процесса; параметр выходного процесса должен иметь возможно большее относительное изменение при заданном абсолютном изменении структурного параметра.

Под диагностическим параметром понимается качественная мера проявления технического состояния системы, элемента по косвенным признакам.

Предельное значение параметра - это его количественная мера, при которой дальнейшая эксплуатация автомобиля и его элементов недопустимы или нецелесообразны по технико-экономическим соображениям.

Автомобиль считается исправным, если все параметры, как структурные, так и выходные, находятся в допустимых пределах изменений. Неисправное техническое состояние характеризуется тем, что один из структурных или выходных параметров вышел за допустимые пределы изменения.

Автомобиль считается работоспособным, если он в данное время удовлетворяет всем требованиям, установленным в отношении основных структурных и выходных параметров, характеризующих допустимые пределы изменения.

Работоспособный автомобиль может быть исправным и неисправным.

Таким образом, исправный автомобиль всегда работоспособен, а неисправный может быть как работоспособным, так и отказавшим.

Наличие возможности определять техническое состояние элементов автомобиля по косвенным признакам составляет сущность процесса диагностирования.

При решении вопросов технической диагностики число вводимых состояний автомобиля может быть различно.

При общем диагностировании элементов, обеспечивающих безопасность движения, выделяются два состояния: исправное и неисправное .

Общее диагностирование автомобиля проводится по диагностическим параметрам, характеризующим его общее техническое состояние, без выявления конкретной неисправности.

Выделение двух состоянии элемента исключает весьма важный вопрос предсказания его исправной работы в определенном диапазоне пробега, т.е. необходимо выделить и составить класс промежуточных или предварительных состояний, которые определяются путем прогнозирования.

Цель прогнозирования - диагностирование будущего состояния элементов автомобиля.

В этом случае проводится углубленная диагностика элементов автомобиля, обеспечивающих его работоспособность.

Поэлементное (углубленное) диагностирование автомобиля, агрегата, узла проводится по диагностическим параметрам, характеризующим их техническое состояние с выявлением места, причины и характера неисправности и отказа.

Техническое состояние элементов автомобиля оценивается путем определенной последовательности в выполнении проверок, входящих в программу диагностирования.

Проверка представляет собой совокупность операций, проводимых над объектом диагностики с целью получения некоторого результата, по которому можно судить о состоянии того или иного элемента.

Отказ автомобиля в целом может быть обусловлен отказом одного или нескольких элементов. Различают субъективный и объективный поиск отказов и неисправностей.

Субъективный поиск основан на опыте и навыках человека-оператора и, как правило, без использования инструментальных средств.

Под субъективным диагностированием понимается определение диагностических параметров, поддающихся при наличии опыта и знаний оценке с помощью органов чувств механика-диагностика или с применением отдельных простейших средств для усиления сигнала.

Объективный поиск , помимо деятельности человека, обязательно предусматривает функционирующую диагностическую систему, позволяющую получить фиксированные числовые значения оценочных параметров.

Объективное диагностирование представляет процесс диагностирования, осуществляемый с помощью контрольно-измерительного оборудования, приборов и инструмента.

Определение технического состояния элементов автомобиля производится путем сравнения полученных показателей выходных параметров с их предельными значениями.

Различают два вида поиска отказов в элементах автомобиля: комбинационный и последовательный .

При комбинационной проверке состояние автомобиля и его элементов определяется путем выполнения заданного числа проверок, порядок осуществления которых произволен. Выявление неисправных узлов производится после проведения всех заданных проверок.

Последовательные проверки производятся в определенном порядке, от общей проверки всего автомобиля в целом к проверкам механизмов, систем, сопряжении, деталей. Необходимость последующей проверки диктуется результатом предыдущей. Такая проверка называется условной в отличие от безусловной, которая выполняется в определенном порядке по всем параметрам. Наиболее целесообразной является последовательная условная проверка автомобиля.

Система диагностирования и комплекс диагностической аппаратуры на автотранспортном предприятии должны быть рассмотрены с точки зрения ее организации, функционирования и экономической эффективности.

Параметры выходных сопутствующих или рабочих процессов очень удобно принимать за косвенные признаки или симптомы неисправного технического состояния объекта без его разборки, так как выходные параметры по самому существу этого понятия могут определяться извне, они доступны измерению. Однако далеко не всякий выходной параметр может стать диагностическим параметром, т.е. применяться при проведении операций диагностирования. Для этого параметр должен удовлетворять следующим требованиям:

· однозначности , т.е. каждому значению структурного параметра,

характеризующего техническое состояние объекта, соответствует только одно, вполне определенное значение параметра выходного процесса;

· чувствительности, т.е. изменению структурного параметра должно

соответствовать возможно большее изменение выходного параметра

· доступности и удобству измерения параметра.

Требования к диагностическим параметрам должны быть удовлетворены при различных скоростных, нагрузочных и тепловых режимах работы диагностируемого объекта. Поэтому в процессе диагностирования используются различные устройства, которые задают или поддерживают режимы работы объекта наиболее благоприятный с точки зрения информативности измеряемого диагностического параметра и, следовательно, оптимальный для постановки диагноза.

Начальное значение диагностического параметра характеризует полную исправность объекта диагностирования и соответствует номинальному значению структурного параметра. Все последующие значения диагностического параметра, сопоставляемые с начальным значением, указывают на степень отклонения структурного параметра объекта от номинала. Зная зависимость величины структурного параметра от наработки, можно сделать заключение об израсходованном ресурсе и предсказать (прогнозировать) остаточный ресурс объекта.

Диагностические симптомы и параметры по объему, характеру и взаимозависимости информации, которую они дают о неисправности или отказе диагностируемого объекта, группируют в три группы:

· частные диагностические симптомы (параметры), которые

независимо от других указывают на вполне конкретную неисправность узла или механизма.

· общие (интегральные) диагностические симптомы,

характеризующие техническое состояние объекта диагностики в целом. К интегральным симптомам относятся, например, мощность двигателя на заданном скоростном режиме, суммарный окружной люфт агрегатов трансмиссии, общий уровень шума агрегата и ряд других. Интегральные симптомы не дают указаний о конкретной неисправности;

· взаимозависимые (симптомо-комплексы) диагностические

симптомы или параметры, характеризующие неисправность только по совокупности нескольких параметров, обнаруженных и измеренных одновременно. Например, обгорание или неплотное прилегание к гнезду впускных клапанов можно обнаружить при наличии одновременно двух симптомов.

Предельное значение диагностического параметра должно назначаться на основании результатов научно-исследовательской работы и данных эксплуатации по трем основным критериям:

технический критерий , учитывающий, что узел или сопряжение достигло предельного состояния: разрушения (поломки) или задира, заедания.

Например, поломка вала, разрушение шарикового подшипника, заклинивание поршня в цилиндре и аналогичные случаи.

Критерий эффективности (технико-экономический критерий) , учитывающий снижение эффективности использования автомобиля ниже допустимого предела.

Например, снижение мощности, повышение расхода топлива или смазки, увеличение затрат на текущий ремонт и на запасные части выше установленных норм.

Функциональный критерий , учитывающий ухудшение удобства управления автомобилем, снижение безопасности движения. Например, перегрев агрегатов, шум повышенный, пробуксовка сцепления и аналогичные признаки предельного состояния автомобиля или его агрегатов.

Некоторые из этих критериев устанавливаются в директивном порядке, другие записаны в технической документации на автомобиль и его эксплуатацию. В ряде случаев из-за отсутствия официальных источников предельные значения диагностических параметров принимаются в автотранспортных предприятиях по опыту эксплуатации и ремонта автомобилей в данном АТП.

В процессе оперативного управления работоспособностью автомобилей наряду с общей статистической информацией необходима индивидуальная информация, отражающая уровень технического состояния конкретного автомобиля, системы, агрегата, детали. Получение такой информации возможно путем непосредственного измерения параметров технического состояния данного автомобиля и сравнения их текущих значений с нормативами.

Автомобиль представляет собой сложную техническую систему. Как известно, качественной мерой, позволяющей оценить состояние системы или ее элементов, а также проявление свойств системы, является параметр (показатель). С точки зрения оценки состояния системы и проявления ее свойств различают параметры структурные и выходные .

Каждый из элементов системы, которой является автомобиль или агрегат, и каждое простейшее сопряжение можно оценить с помощью одного или нескольких структурных и выходных параметров. Система же оценивается по совокупности параметров, отражающих состояние отдельных элементов, сопряжений и их свойств.

В процессе эксплуатации автомобиля текущие значения параметров его состояния изменяются от начальных или номинальных значений до предельных.

Формирование возможных состояний автомобиля определяется набором нормативных значений параметров состояния.

Номинальные и предельные значения параметров автомобилей, его агрегатов, узлов и деталей должны устанавливаться заводами-изготовителями в отраслевой нормативно-технической документации, согласованной с общегосударственной системой стандартов и отраслевыми нормативными документами эксплуатирующих отраслей и ведомств с учетом специфических условии эксплуатации.

На основании анализа и классификации по методу назначения или определения нормативные значения параметров можно разбить на три группы.

К первой группе относятся нормативные значения, задаваемые на уровне государственных стандартов или других руководящих документов общегосударственного значения. Нормативы этой группы назначаются для параметров систем, обеспечивающих безопасность автомобиля и определяющих его влияние на окружающую среду.

Ко второй группе относятся нормативы параметров, изменение которых не зависит от условий эксплуатации автомобилей, а определяется только конструктивными и технологическими факторами, такими, как применяемые материалы, технология изготовления, форма и размеры и т.п. Эти нормативы обычно оговариваются в технических условиях завода-изготовителя или в инструкции по эксплуатации изделия, и эти рекомендации являются одинаково достоверными для различных условий эксплуатации.

К третьей группе относятся нормативы для параметров, на изменение которых в зависимости от наработки существенное влияние оказывают условия эксплуатации. В этом случае нормативные значения одного и того же параметра для автомобилей, работающих на различных видах перевозок, могут существенно (в 1,5-2 раза) отличаться.

Необходимо иметь в виду, что определяемое предельно допустимое значение параметра для одноименных объектов, входящих в выборку, будет иметь естественное рассеивание. В силу этого на граничных областях рассеивания, аппроксимируемого теоретическим законом распределения, одни и те же значения параметра могут соответствовать как исправному, так и неисправному (предотказному) состоянию. Поэтому уровень вероятности а , определяющий назначение границы отнесения объекта к исправному или неисправному состояниям, определяется с учетом ошибок первого и второго рода, возможных при использовании данного параметра.

Под ошибкой первого рода понимают признание исправного объекта неисправным, а под ошибкой второго рода понимается пропуск неисправности, когда неисправный объект признается годным к дальнейшей эксплуатации.

Ошибки первого рода приводят к неоправданным разборочно-сборочным и контрольным работам, простою автомобилей в ремонте. Ошибки второго рода приводят к возникновению аварийных линейных или дорожных отказов автомобилей или к значительным потерям за счет повышенного расхода топлива, увеличенной интенсивности изнашивания шин, к снижению срока службы аккумуляторных батарей.

Субъективные и объективные причины отказов Отказ событие, заключающееся в нарушении работоспособного состояния объекта Критерий отказа признак или совокупность признаков нарушения работоспособного состояния объекта, установленные в нормативно-технической и (или) конструкторской (проектной) документации Причина отказа явления, процессы, события и состояния, вызвавшие возникновение отказа объекта Основы теории надежности Причины возникновения отказов 1

Субъективные и объективные причины отказов Последствия отказа явления, процессы, события и состояния, обусловленные возникновением отказа объекта Критичность отказа совокупность признаков, характеризующих последствия отказа. Примечание. Классификация отказов по критичности (например по уровню прямых и косвенных потерь, связанных с наступлением отказа, или по трудоемкости восстановления после отказа) устанавливается нормативно-технической и (или) конструкторской (проектной) документацией по согласованию с заказчиком на основании технико-экономических соображений и соображений безопасности Основы теории надежности Причины возникновения отказов 2

Субъективные и объективные причины отказов Ресурсный отказ, в результате которого объект достигает предельного состояния Независимый отказ, не обусловленный другими отказами Зависимый отказ, обусловленный другими отказами Основы теории надежности Причины возникновения отказов 3

Субъективные и объективные причины отказов Внезапный отказ, характеризующийся скачкообразным изменением значений одного или нескольких параметров объекта Постепенный отказ, возникающий в результате постепенного изменения значений одного или нескольких параметров объекта Сбой самоустраняющийся отказ или однократный отказ, устраняемый незначительным вмешательством оператора Основы теории надежности Причины возникновения отказов 4

Субъективные и объективные причины отказов Перемежающийся отказ многократно возникающий самоустраняющийся отказ одного и того же характера Явный отказ, обнаруживаемый визуально или штатными методами и средствами контроля и диагностирования при подготовке объекта к применению или в процессе его применения по назначению Скрытый отказ, не обнаруживаемый визуально или штатными методами и средствами контроля и диагностирования, но выявляемый при проведении технического обслуживания или специальными методами диагностики Основы теории надежности Причины возникновения отказов 5

Субъективные и объективные причины отказов Конструктивный отказ, возникший по причине, связанной с несовершенством или нарушением установленных правил и (или) норм проектирования и конструирования Производственный отказ, возникший по причине, связанной с несовершенством или нарушением установленного процесса изготовления или ремонта, выполняемого на ремонтном предприятии Основы теории надежности Причины возникновения отказов 6

Субъективные и объективные причины отказов Эксплуатационный отказ, возникший по причине, связанной с нарушением установленных правил и (или) условий эксплуатации Деградационный отказ, обусловленный естественными процессами старения, изнашивания, коррозии и усталости при соблюдении всех установленных правил и (или) норм проектирования, изготовления и эксплуатации Основы теории надежности Причины возникновения отказов 7

Субъективные и объективные причины отказов Отказы машин и оборудования происходят по субъективным и объективным причинам. Субъективные причины подразделяются на конструктивные, производственные и эксплуатационные. Объективные причины включают как раздельное, так и совместное действие физического, химического и других полей, объективно существующих в природе Основы теории надежности Причины возникновения отказов 8

Субъективные и объективные причины отказов По объективным причинам, которые могут быть ослаблены или усилены субъективными (человеческим фактором), детали машин и оборудования разрушаются в основном: 1. Под действием нагрузок, температуры и скоростей - параметров физического поля. 2. От воздействия кислотной или щелочной среды - параметров химического поля. 3. Вследствие совместного действия физического и химического полей. Основы теории надежности Причины возникновения отказов 9

Субъективные и объективные причины отказов Помимо указанных основных причин, разрушение элементов конструкций может происходить под воздействием: радиационного излучения; охрупчивания; старения; воздействия микроорганизмов и т. д. Основы теории надежности Причины возникновения отказов 10

Субъективные и объективные причины отказов В соответствии с нормативно-технической документацией оценка показателей надежности объектов осуществляется на основании количества отказов, вызванных конструктивными и производственными причинами Для лесозаготовительных машин доля конструктивных и производственных причин отказов составляет соответственно 20 -25% и 45 -50%. Основы теории надежности Причины возникновения отказов 11

Субъективные и объективные причины отказов При оценке показателей надежности объектов НЕ учитываются: эксплуатационные отказы, доля которых для лесозаготовительных машин составляет 25 -39%; зависимые отказы; отказы, возникшие после исчерпания установленного ресурса объекта; отказы, устраняемые проведением операций очередного или внеочередного технического обслуживания. Основы теории надежности Причины возникновения отказов 12

Субъективные и объективные причины отказов Отказы могут быть систематическими (массовыми) и случайными (единичными). Систематический отказ (массовый отказ) - многократно повторяющийся на большей части эксплуатируемых объектов, однородный по определенным признакам, обусловленный в основном одними и теми же причинами конструктивного, или производственного характера, возникающий при определенной наработке объекта. Единичные отказы происходят по широкому спектру причин, связанных в том числе, например, и с качеством проката, из которого изготовлен объект. Основы теории надежности Причины возникновения отказов 13

Субъективные и объективные причины отказов По последствиям отказы можно разделить на параметрические и отказы функционирования. Параметрический отказ характеризуется выходом параметров объекта за допустимые пределы. Отказ функционирования приводит к прекращению выполнения объектом своих функций. Основы теории надежности Причины возникновения отказов 14

Субъективные и объективные причины отказов В зависимости от трудоемкости устранения отказы делятся на три группы сложности. К первой группе сложности относятся отказы, устраняемые восстановлением или заменой недорогих и нематериалоемких деталей, расположенных снаружи сборочных единиц и агрегатов, без разборки последних. Продолжительность устранения отказов первой группы сложности лесозаготовительных машин не превышает одного часа. Основы теории надежности Причины возникновения отказов 15

Субъективные и объективные причины отказов Ко второй группе сложности относятся отказы, устраняемые восстановлением или заменой легкодоступных деталей, сборочных единиц, устранение которых может потребовать вскрытия внутренних полостей агрегатов. Устранение отказов второй группы сложности может потребовать до четырех часов и предусматривает замену не самых дорогих и металлоемких элементов объекта. Основы теории надежности Причины возникновения отказов 16

Субъективные и объективные причины отказов Для устранения отказов третьей группы сложности требуется снятие и разборка основных агрегатов с продолжительностью ремонта до восьми и более часов календарного времени. Основы теории надежности Причины возникновения отказов 17

Субъективные и объективные причины отказов Отказы в соответствии со всей физической природой (объективными причинами) бывают связаны с: деформацией и механическим разрушением материалов, тепловым разрушением, изнашиванием поверхностей деталей, коррозионным разрушением, электроэрозионным разрушением, радиационным разрушением, потерей приданных служебных (например, упругих или магнитных) свойств, др. физическими и химическими явлениями. Основы теории надежности Причины возникновения отказов 18

Субъективные и объективные причины отказов Невосстанавливаемые объекты после первого отказа дальнейшей эксплуатации не подлежат и списываются. Восстанавливаемые объекты до наступления предельного состояния при наличии отказов восстанавливаются и вновь поступают в эксплуатацию. Таким образом, отказы существуют устраняемые и неустраняемые. Основы теории надежности Причины возникновения отказов 19

Субъективные и объективные причины отказов Физическое поле, представляющее совокупность температуры (Т), скорости (V) и нагрузки (Р), бывает стационарным и изменяющимся во времени. Существует множество видов физического поля, разрушающих конструкцию объекта при том или ином сочетании характеризующих поле параметров. Основы теории надежности Причины возникновения отказов 20

Субъективные и объективные причины отказов Основные виды физического поля: Основы теории надежности силовое (механическое), тепловое, электрическое, магнитное, звуковое, световое и др. Причины возникновения отказов 21

Субъективные и объективные причины отказов Разрушающее действие объективно существующего в природе физического поля может быть замедлено грамотными действиями как конструктора, технолога, так и производственника, изготавливающего изделие в металле или использующего изделие в рядовой эксплуатации. Основы теории надежности Причины возникновения отказов 22

Субъективные и объективные причины отказов Объективно действующие процессы разрушения и изнашивания элементов объекта могут быть заторможены специалистами заводов-изготовителей техники и специалистами предприятий, ее эксплуатирующих. Это возможно при соответствующем знании теории надежности и соблюдении правил проектирования, изготовления, эксплуатации технических объектов. Основы теории надежности Причины возникновения отказов 23

Методы диагностирования автотранспортных средств подразделяются на субъективные и объективные. В основе субъективных методов лежат способы определения технического состояния автомобиля по выходным параметрам динамических процессов. Однако получение, анализ информации, а также принятие решения о техническом состоянии производятся с помощью органов чувств человека, что, естественно, имеет достаточно высокую погрешность.

Субъективные методы

Наибольшее распространение получили следующие субъективные методы:

  • визуальный
  • прослушивание работы механизма
  • ощупывание механизма
  • заключение о техническом состоянии на основании логического мышления

Визуальный метод дает возможность обнаружить, например, следующие неисправности:

  • нарушение уплотнений, трещины, дефекты трубопроводов, соединительных шлангов и т.п. - по течи топлива, масла, экс­плуатационных жидкостей
  • неполное сгорание топлива - по дымлению из выхлопной трубы
  • подтекание форсунок - по повышению уровня масла в под­доне картера двигателя и т.д.

Прослушивание работы механизма позволяет обнаружить следующие неисправности:

  • увеличенный зазор между клапанами и коромыслами ме­ханизма газораспределения - по стукам в зоне клапанного ме­ханизма
  • повышенный износ шатунных и коренных подшипников - по стукам в соответствующих зонах кривошипно-шатунного ме­ханизма при изменении частоты вращения коленчатого вала
  • чрезмерное опережение или запаздывание впрыска топли­ва - по характеру звука выхлопа (при раннем впрыске - «жесткая работа», при позднем - «мягкая»)
  • неисправности сцепления автомобиля - по шуму и стукам при переключении передачи и др.

Методом ощупывания механизма можно определить такие неисправности:

  • ослабление креплений - по относительному перемещению деталей
  • неисправности отдельных трущихся механизмов и деталей - по чрезмерному их нагреву
  • неисправности рулевого механизма - по толчкам на руле­вом колесе и др.

На основании логического мышления можно сделать заклю­чение о следующих неисправностях:

  • топливной аппаратуры - затруднен пуск двигателя
  • системы охлаждения - двигатель перегревается и др.

Объективные методы

Объективные методы основываются на измерении и анализе информации о действительном техническом состоянии элементов автомобиля с помощью контрольно-диагностических средств и путем принятия решения по специально разработанным алгоритмам диагностирования. Применение тех или иных методов существенно зависит от целей, которые решаются в процессе технической подготовки автомобилей. Однако в связи с усложнением конструкции автомобиля, повышенными требованиями к эксплуатационным качествам, интенсивностью использования объективные методы диагностирования находят все большее применение.

Методы диагностирования автомобилей, их агрегатов и узлов характеризуются способом измерения и физической сущностью диагностических параметров, наиболее приемлемых для исполь­зования в зависимости от задачи диагностирования и глубины постановки диагноза.

В настоящее время принято выделять три основные группы методов, классифицированных по виду диагностических параметров.

Методы I группы базируются в основном на имитации скоростных и нагрузочных режимов работы автомобиля и определении при заданных условиях выходных параметров. Для этих целей используются стенды с беговыми барабанами или параметры определяются непосредственно в процессе работы автомобиля на линии. Методы диагностирования по параметрам экс­плуатационных свойств дают общую информацию о техническом состоянии автомобиля. Они позволяют оценить основные экс­плуатационные качества автомобиля:

  • тормозные
  • мощностные
  • топливную экономичность
  • устойчивость и управляемость
  • на­дежность
  • удобство пользования
  • и т.д.

Методы II группы базируются на объективной оценке гео­метрических параметров в статике и основаны на измерении значения этих параметров или зазоров, определяющих взаим­ное расположение деталей и механизмов. Проводят такое диаг­ностирование в случае, когда измерить эти параметры можно без разборки сопряжений трущихся деталей. Структурными па­раметрами могут быть зазоры в подшипниковых узлах, клапан­ном механизме, кривошипно-шатунной и поршневой группах двигателя, шкворневом соединении колесного узла, рулевом управлении, углы установки передних колес и др. Диагностиро­вание по структурным параметрам производится с помощью из­мерительных инструментов: щупов, линеек, штангенциркулей, нутромеров, индикаторов часового типа, отвесов, а также спе­циальных устройств. Преимущество методов этой группы - возможность постановки точных диагнозов, простота средств измерения, а недостатки - большая трудоемкость, малая тех­нологичность.

К III группе относятся методы, оценивающие параметры сопутствующих процессов. Например, герметичность рабочих объемов оценивается при обнаружении и количественной оцен­ке утечек газов или жидкостей из рабочих объемов, узлов и аг­регатов автомобиля. К таким рабочим объемам можно отнести:

  • камеру сгорания
  • герметичность которой зависит от состояния цилиндропоршневой группы и клапанов газораспределения
  • систему охлаждения
  • систему питания двигателя
  • гид­равлические и пневматические приборы и механизмы

По интенсивности тепловыделения можно оценить работу трения сопряженных поверхностей деталей, качество процессов сгорания (например, по температуре отработавших газов), однако такие методы пока не нашли широкого применения.

При создании средств технического диагностирования транс­портных средств широко используются также методы, оценивающие состояние узлов и систем по параметрам колебательных процессов . Их можно разделить на три подвида:

  1. методы, оценивающие колебания напряжения в электри­ческих цепях
  2. методы, оценивающие параметры виброакустических сиг­налов (получаемых при работе зубчатых зацеплений, клапанных механизмов, подшипников и т.д.)
  3. методы, оценивающие пульсацию давления в трубопрово­дах (на основе этого принципа работают дизель-тестеры для ди­агностирования дизельной топливной аппаратуры)

Методы, с помощью которых оцениваются колебания напряжения в электрических цепях, используются для диагностирова­ния системы зажигания двигателя по характерным осциллограм­мам напряжений в первичной и вторичной цепях. Осциллографом отображаются процессы, протекающие в первичной и вторичной цепях системы зажигания за время между последовательными искровыми разрядами в цилиндрах, для визуального исследова­ния. Участки осциллограмм содержат информацию о состоянии . По осциллограмме первичного напряжения непосредственно измеряют угол замкнутого состояния контактов. По напряжению искрового разряда осциллограммы вторичного напряжения определяют состояние зазора свечи. Сравнивая полученные осциллограммы с эталонными, выявляют характерные неисправности проверяемой системы зажигания.

Виброакустические методы используются для измерения низко- и высокочастотных колебаний систем и элементов транс­портных средств.

Одним из таких методов является диагностирование по перио­дически повторяющимся рабочим процессам или циклам. Суть данного метода заключается в следующем. Рабочие процессы впуска, сжатия, сгорания и выпуска, изменение давления в топливных трубопроводах высокого давления, колебательные процессы в системе зажигания и другие часто повторяются. Так как закономерности изменения параметров рабочих процессов во всех периодах идентичны, то для диагностирования достаточно изучить параметры одного цикла. Для этого с помощью специальных преобразователей параметры одного цикла задерживают, разворачивают во времени и выводят на регистрирующий или пока­зывающий прибор.

Определенное место занимают методы, оценивающие по фи­зико-химическому составу отработавших состояние узлов и агрегатов и отклонения от их нормального функционирования, например анализ отработанного масла, анализ отработавших газов и т.п. Диагностирование по составу масла производится путем анализа его проб, взятых из картера двигателя с целью определения количественного содержания продуктов износа деталей, а также наличия загрязнений и примесей. Концентрации железа, алюминия, кремния, хрома, меди, свинца, олова и других элементов в масле позволяют судить о скорости изнашивания деталей. По изменению концентрации железа в масле можно судить о скорости изнашивания гильзы цилиндров, шеек коленчатого вала, поршневых колец. По изменению концентрации алюминия судят о скорости изнашивания поршней и других деталей. Содержание почвенной пыли харак­теризует состояние воздушных фильтров и герметичность тракта подачи воздуха в цилиндр двигателя.

Угрозы , как возможные опасности совершения какого-либо действия, направленного против объекта защиты, проявляются не сами по себе, а через уязвимости (причины), приводящие к нарушению безопасности информации на конкретном объекте информатизации. Уязвимости присущи объекту информатизации, неотделимы от него и обуславливаются недостатками процесса функционирования, свойствами архитектуры автоматизированных систем, протоколами обмена и интерфейсами, применяемыми ПО и аппаратной платформой, условиями эксплуатации и расположения. Каждой угрозе мб сопоставлены различные уязвимости . Устранение или существенное ослабление уязвимостей влияет на возможность реализации угроз безопасности информации.

Для удобства анализа, уязвимости разделены на классы по принадлежности к источнику уязвимостей, классыуязвимостей разделены на группы по проявлениям:

1.Объективные уязвимости (Сопутствующие техническим средствам излучения, Активизируемые, Определяемые особенностями элементов, Определяемые особенностями объекта информатизации)

2.Субъективные уязвимости (Ошибки (халатность), Нарушения, Психогенные)

3.Случайные уязвимости (Сбои и отказы, Косвенные причин)

Объективные уязвимости . Объективные уязвимости зависятот особенностей построения и технических характеристикоборудования , применяемого на защищаемом объекте. Полное устранение этих уязвимостей невозможно, но они могут существенно ослабляться техническими и инженерно-техническими методами парирования угроз безопасности информации. К ним можно отнести:

1)сопутствующие техническим средствам излучения :

а)электромагнитные (побочные излучения элементов технических средств, кабельных линий технических средств, излучения на частотах работы генераторов, на частотах самовозбуждения усилителей);

б)электрические (наводки электромагнитных излучений на линии и проводники, просачивание сигналов в цепи электропитания, в цепи заземления, неравномерность потребления тока электропитания);

в) звуковые (акустические, виброакустические);

2)активизируемые :

а) аппаратные закладки (устанавливаемые в телефонные линии, в сети электропитания, в помещениях, в технических средствах);

б)программные закладки (вредоносные программы, технологические выходы из программ, нелегальные копии ПО);

3)определяемыеособенностями элементов :

а)элементы, обладающие электроакустическими преобразованиями (телефонные аппараты, громкоговорители и микрофоны, катушки индуктивности, дроссели, трансформаторы и пр.);

б)элементы, подверженные воздействию электромагнитного поля (магнитные носители, микросхемы, нелинейные элементы, поверженные ВЧ навязыванию);

4)определяемые особенностями защищаемого объекта :

а)местоположением объекта (отсутствие контролируемой зоны, наличие прямой видимости объектов, удаленных и мобильных элементов объекта, вибрирующих отражающих поверхностей);

б)организацией каналов обмена информацией (использование радиоканалов, глобальных информационных сетей, арендуемых каналов).

Субъективные уязвимости . Субъективные уязвимости зависят от действий сотрудников и, в основном, устраняются организационными и программно-аппаратными методами парирования угроз:

1) Ошибки :

а)при подготовке и использовании ПО (при разработке алгоритмов и программного обеспечения, инсталляции и загрузке программного обеспечения, эксплуатации программного обеспечения, вводе данных);

б)при управлении сложными системами (при использовании возможностей самообучения систем, настройке сервисов универсальных систем, организации управления потоками обмена информации);

в)при (при включении/выключении технических средств, использовании технических средств охраны, использовании средств обмена информацией).

2) Нарушения :

а)режима охраны и защиты (доступа на объект, доступа к техническим средствам);

б)режима эксплуатации технических средств (энергообеспечения, жизнеобеспечения);

в)режима использования информации (обработки и обмена информацией, хранения и уничтожения носителей информации, уничтожения производственных отходов и брака);

г)режима конфиденциальности (сотрудниками в нерабочее время, уволенными сотрудниками).

Случайные уязвимости зависят от особенностей окружающей защищаемый объект среды и непредвиденных обстоятельств. Эти факторы, как правило, мало предсказуемы и их устранение возможно только при проведении комплекса организационных и инженерно-технических мероприятий по противодействию угрозам ИБ:

Сбои и отказы :

а)отказы и неисправности технических средств (обрабатывающих информацию, обеспечивающих работоспособность средств обработки информации, обеспечивающих охрану и контроль доступа);

б) старение и размагничивание носителей информации (дискет и съемных носителей, жестких дисков, элементов микросхем, кабелей и соединительных линий);

в)сбои ПО (операционных систем и СУБД, прикладных программ, сервисных программ, антивирусных программ);

г)сбои электроснабжения (оборудования, обрабатывающего информацию, обеспечивающего и вспомогательного оборудования).