10 ампер автомат какая. Переводим Вольт-Амперы (ВА) в Ватты (Вт). Онлайн калькулятор по расчету ватт в амперы

На бытовых приборах (миксер, фен, блендер) производители пишут потребляемую мощность в ваттах, на устройствах, которые требуют больших объемов электрической нагрузки (электрическая плита, пылесос, водонагреватель), – в киловаттах. А на розетках или автоматических выключателях, через которые подключаются к сети приборы, принято указывать силу тока в амперах. Чтобы понять, выдержит ли розетка подключаемое устройство, нужно знать, как переводить амперы в ватты.

Единицы мощности

Перевод ватты в амперы и наоборот – понятие относительное, потому как это разные единицы измерения. Амперы – это физическая величина силы электрического тока, то есть скорость прохождения электричества через кабель. Ватт – величина электрической мощности, или скорость потребления электроэнергии. Но такой перевод необходим для того, чтобы рассчитать, соответствует ли значение силы тока значению его мощности.

Перевод ампера в ватты и киловатты

Знать, как посчитать соответствие ампер ваттам, нужно для того, чтобы определить, какое устройство способно выдержать мощность подключаемых потребителей. К таким устройствам относят защитную аппаратуру или коммутационную.

Перед тем как выбрать, какой автоматический выключатель или устройство защитного отключения (УЗО) установить, нужно посчитать мощности потребления всех подключаемых приборов (утюг, лампы, стиральная машина, компьютер и т.д.). Или же наоборот, зная, какой стоит автомат или защитное устройство отключения, определить, какое оборудование выдержит нагрузку, а какое нет.

Для перевода ампера в киловатты и наоборот существует формула: I=P/U, где I – амперы, P – ватты, U – вольты. Вольты – это напряжение сети. В жилых помещениях используется однофазная сеть – 220 В. На производстве для подключения промышленного оборудования работает электрическая трехфазная сеть, значение которой равно 380 В. Исходя из этой формулы, зная амперы, можно посчитать соответствие ваттам и наоборот – перевести ватты в амперы.

Ситуация: имеется автоматический выключатель. Технические параметры: номинальный ток 25 А, 1-полюс. Нужно посчитать, какую ваттность приборов способен выдержать автомат.

Проще всего технические данные внести в калькулятор и рассчитать мощность. А также можно использовать формулу I=P/U, получится: 25 А=х Вт/220 В.

х Вт=5500 Вт.

Чтобы ватты перевести в киловатты,необходимо знать следующие меры мощности в ватт:

  • 1000 Вт = 1 кВт,
  • 1000 000 Вт = 1000 кВт = МВт,
  • 1000 000 000 Вт = 1000 МВт = 1000000 кВт и т.д.

Значит, 5500 Вт =5,5 кВт. Ответ: автомат с номинальным током 25 А может выдержать нагрузку всех приборов общей мощностью 5,5 кВт, не более.

Применяют формулу с данными напряжения и силы тока для того, чтобы подобрать тип кабеля по мощности и силе тока. В таблице приведено соответствие тока сечению провода:

Медные жилы проводов и кабелей
Сечение жилы, мм² Медные жилы проводов, кабелей
Напряжение 220 В Напряжение 380 В
Ток, А Мощность, кВт Ток, А Мощность, кВт
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33
16 85 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75,9
50 175 38,5 145 95,7
70 215 47,3 180 118,8
95 260 57,2 220 145,2
120 300 66 260 171,6

Как перевести ватт в ампер

Перевести ватт в ампер нужно в ситуации, когда необходимо поставить защитное устройство и нужно выбрать, с каким номинальным током оно должно быть. Из инструкции по эксплуатации ясно, сколько ватт потребляет бытовой прибор, подключаемый к однофазной сети.

Задача рассчитать, сколько ампер в ваттах или какая соответствует розетка для подключения, если микроволновая печь потребляет 1,5 кВт. Для удобства расчета киловатты лучше перевести в ватты: 1,5 кВт = 1500 Вт. Подставляем значения в формулу и получаем: 1500 Вт / 220 В = 6,81 А. Значения округляем в большую сторону и получаем 1500 Вт в пересчете на амперы – потребление тока СВЧ не менее 7 А.

Если подключать несколько приборов одновременно к одному устройству защиты, то чтобы посчитать, сколько в ваттах ампер, нужно все значения потребления сложить вместе. Например, в комнате используется освещение со светодиодными лампами 10 шт. по 6 Вт, утюг мощностью 2 кВт и телевизор 30 Вт. Сначала все показатели нужно перевести в ватты, получается:

  • лампы 6*10= 60 Вт,
  • утюг 2 кВт=2000 Вт,
  • телевизор 30 Вт.

60+2000+30=2090 Вт.

Теперь можно перевести ампер в ватты, для этого подставляем значения в формулу 2090/220 В = 9,5 А ~ 10 А. Ответ: потребляемый ток около 10 А.

Необходимо знать, как перевести амперы в ватты без калькулятора. В таблице показано соответствие скорости потребления электроэнергии силе тока при однофазной и трехфазной сетях.

Ампер (А) Мощность (кВт)
220 В 380 В
2 0,4 1,3
6 1,3 3,9
10 2,2 6,6
16 3,5 10,5
20 4,4 13,2
25 5,5 16,4
32 7,0 21,1
40 8,8 26,3
50 11,0 32,9
63 13,9 41,4

Как перевести амперы в киловатты (таблица для двух и трехфазных сетей). 10 ампер какая мощность

Как рассчитать сколько ампер в одном кВт таблица перевода

При приобретении нового оборудования на предприятии, при покупке электроаппаратуры в быту и других подобных случаях возникает вопрос о соответствии существующей проводки той нагрузке, которую создаст электроприбор на электрическую сеть и сможет ли она обеспечить безопасную работу данного устройства. Для подключения новых электроприборов рекомендуется пригласить специалиста, который проведет расчет и сделает вывод о пригодности существующей электрической сети тем параметрам, которые необходимы.

Покупая новую технику необходимо обязательно узнать ту мощность в киловаттах, которую потребляет электроприбор – сколько ампер он потребляет. Это нужно для определения возможности установки ее в помещении с существующей электропроводкой, а также для новых зданий и сооружений для расчета сечения провода, который будет заложен в стены для безопасной работы этого прибора. Используемые параметры:

  • Напряжение
  • Мощность

Последствия неправильного подключения

Опасности

Если диаметр провода меньше расчетной потребляемой мощности – возможны следующие последствия:

Вопрос «Сколько ампер содержится в 1 киловатте?» можно считать некорректным, т. к. эти величины связаны между собой, но перевести одну величину в другую невозможно без еще одного параметра - напряжения. Перевод происходит по формуле P = I * U /1000, где P – мощность (киловатт), I - сила тока потребления (ампер), U - напряжение источника питания (вольт). Поэтому, чтобы узнать как перевести ампер в киловатт, требуется знать две величины: напряжение питания и мощность потребления.

Пример: для участка цепи с постоянным источником тока мощность потребления – один киловатт. Напряжение источника – 10 вольт. Тогда, исходя из приведенной формулы можно рассчитать сколько ампер проходит через нагрузку: I = P / U.

I =1000/10=100 Ампер.

Применение расчетов

Такой перевод справедлив для цепи постоянного тока и для цепи переменного тока с активной нагрузкой. Для переменного напряжения в расчетах добавляется параметр Cos ф. При активной нагрузке (электролампочки накаливания, электроплиты со спиральными нагревателями и др.) этот параметр стремится к единице. При наличии же реактивной составляющей потребителя (электродвигатели, холодильники с компрессором) Cos ф может меняться от 0,7 до 0,9 в зависимости от характеристик нагрузки. На информационных табличках электродвигателей рядом с указанием напряжения питания всегда указывают мощность в кВт и параметр Cos ф, который можно применять в расчетах.

Можно быстрого и легкого перевести параметры, для чего составляется таблица, которая показывает соотношение мощности и силы тока при заданном напряжении.

Пример таблицы для тока 25 ампер.

Пример таблицы для тока 16 ампер.

В автомобилях, где напряжение питания составляет 12 или 24 вольта ток, проходящий по проводникам, отличается от тех величин, которые действуют в сети 220/380В. Так для запуска двигателя внутреннего сгорания используется стартер, который в начальный момент потребляет более 200 ампер, мощность при этом может быть не более 2 кВт. Для этого случая нужен провод очень большого сечения для предотвращения перегрева и возникновения потерь в проводах.

В авиации, для уменьшения потребления тока в амперах при сохранении нужных параметров электродвигателей в киловаттах используют следующее свойство: габаритные размеры магнитных сердечников двигателей, трансформаторов напрямую зависят от частоты питающего напряжения. В бортовой сети самолетов применяют питающее напряжение частотой 400 Гц.

Таким образом, снижаются размеры электроприборов и уменьшаются токи, проходящие по проводникам. Соответственно снижается и диаметр проводников. Перевод происходит следующим образом: при постоянном токе для питания двигателя в один киловатт напряжением 100 вольт нужен ток 10 ампер. При частоте 400 Гц для получения той же мощности в киловаттах нужен ток в несколько раз меньше.

Все приведенные расчеты перевода ампер в кВт можно принимать лишь как приблизительные. Ни одна таблица перевода ампер в кВт не даст точного значения, потому, что напряжение питания обычно нестабильно и зависит от той нагрузки в кВт, которая включена в сеть. Так в любом доме. Квартире напряжение сети может колебаться от 200 до 240 вольт при относительно симметричной нагрузке на фазы. Поэтому и ток, проходящий через электроприборы, будет меняться.

instrument.guru

Как перевести амперы в киловатты (таблица для двух и трехфазных сетей)

Амперы Сеть 220В Сеть 380
0.22 кВт 0.38 кВт
0.44 кВт 0.76 кВт
0.66 кВт 1.14 кВт
0.88 кВт 1.52 кВт
1.1 кВт 1.9 кВт
1.32 кВт 2.28 кВт
1.76 кВт 3.04 кВт
10А 2.2 кВт 3.8 кВт
13А 2.86 кВт 4.94 кВт
16А 3.52 кВт 6.08 кВт
20А 4.4 кВт 7.6 кВт
25А 5.5 кВт 9.5 кВт
32А 7.04 кВт 12.16 кВт
40А 8.8 кВт 15.2 кВт
50А 11 кВт 19 кВт
63А 13.86 кВт 23.94 кВт
80А 17.6 кВт 30.04 кВт
100А 22 кВт 38 кВт
125А 27.5 кВт 47.5 кВт
160А 35.2 кВт 60.8 кВт
200А 44 кВт 76 кВт
250А 55 кВт 95 кВт
315А 69.3 кВт 119.7 кВт
500А 110 кВт 190 кВт
Коротко и ясно © 2018

bestotvet.com

Особенности подключения электроприборов большой мощности

Мы живем в век электроники, и практически каждый дом оснащен не одним десятком электротехники, слабой и достаточно мощной. К ней относится - стиральная и посудомоечная машины, бойлер, электрический обогреватель и пр. Особенность этой бытовой техники в высоком токе нагрузки при подключении к сети, поэтому о них стоит поговорить подробно. Если производить подключение неправильно, электрическая проводка будет чрезмерно нагреваться и испортится в считанные дни. Риск возникновения пожара будет повышен, к тому же, сам прибор выйдет из строя. Как же правильно подключать бытовую технику чтобы избежать таких неприятностей?

Стоит учесть возможности бытовой электропроводки

Чтобы избежать неприятных последствий важно ознакомиться с возможностями домашней электропроводки. Например, советские розетки на нагрузку больше 6 ампер не рассчитаны. Если у вас установлены такие розетки, особо ничего не подключишь. Современные розетки европейского типа рассчитаны на 10 или 16 ампер. Замена советской розетки на современную возможна, если сечение кабеля сможет выдержать подобную нагрузку. Все электрические приборы потребляют от сети определенную мощность. Это очень важный параметр и требует первостепенного внимания. Потребляемая мощность прибора указывается в техническом паспорте или на корпусе. Мощными считаются приборы потребляющие свыше 100 ватт. Они и представляют интерес для нас.

Какая связь между мощностью прибора и током?

Мощность - это сумма тока и напряжения. Значит, чтобы узнать какую мощность в ваттах способна выдержать розетка, если максимальные показатели указаны в амперах, нужно умножить напряжение на соответствующий ток. Возьмем напряжение в сети 220 вольт, и максимальную мощность розеток 6, 10 и 16 ампер. Получаем следующие показатели:

  • розетка на 6 ампер выдержит нагрузку 1320 Ватт;
  • розетка на 10 ампер нагрузку - 2200 Ватт;
  • розетка на 16 ампер - 3520 Ватт.
Если знать эти показатели, проблем с подключением мощных приборов не возникнет.

Распространенные ошибки потребителей

Первая ошибка - это подключение к розетке 10 ампер удлинителя на более слабый ток (6 ампер). Потребитель, совершая такой манёвр ожидает, что напряжение в удлинителе станет как в розетке 2200 Вт, но в результате удлинитель приходит в негодность. Вот еще пример. К розетке на 6 ампер подключают удлинитель на 10 ампер с уверенностью, что получен запас мощности на 2200 ватт. Что же происходит в действительности? Полученная мощность будет такой, на какую рассчитана розетка - 6 ампер, но сама розетка выйдет из строя, да и вилка удлинителя из-за превышенного нагревания тоже пострадает. Случается и такое, что к розетке на 6 ампер присоединяет соответствующий удлинитель. Максимальная нагрузка составляет 1320 Вт, и подключает к примеру электрический обогреватель на 1000 Ватт и пылесос на 800 Ватт одновременно, общая мощность возрастает до размеров не рассчитанных на данную розетку. К подключению к сети электроприборов высокой мощности стоит отнестись очень серьезно. Тогда ни проводка, ни приборы, ни потребитель не пострадают.

Замена электропроводки в доме или квартире

Если в доме планируется замена электропроводки, мощные приборы учитываются в первую очередь. Это значит, что для них следует провести отдельную линию электропроводки прямо из распределительного щитка. Розетки для слабых приборов можно подключать от одной линии шлейфом (от первой ко второй, от второй к третьей и т.д)

Выбираем кабель

Кабель и его сечение выбирается с учетом нагрузки от электроприборов, которые будут к нему подключаться. Обычно в домашней электропроводке используют ВВГнг кабель или гибкий кабель ПВС.

Еще перед Новым годом попросили меня читатели сделать обзор на пару преобразователей.
Ну мне как бы в принципе несложно, да и самому любопытно, заказал, получил, протестировал.
Правда меня больше заинтересовал немного другой преобразователь, но до него никак не дойдут руки, потому о нем в другой раз.
Ну а сегодня обзор простого DC-DC преобразователя с заявленным током в 10 Ампер.

Заранее приношу извинение за большую задержку с публикацией этого обзора у тех, кто его давно ждал.

Для начала характеристики, заявленные на странице товара и небольшое пояснение и коррекция.
Input voltage: 7-40V
1, Output voltage: continuously adjustable (1.25-35V)
2, Output Current: 8A, 10A maximum time within the (power tube temperature exceeds 65 degrees, please add cooling fan, 24V 12V 5A turn within generally be used at room temperature without a fan)
3, Constant Range: 0.3-10A (adjustable) module over 65 degrees, please add fan.
4, Turn lights Current: current value * (0.1) This version is a fixed 0.1 times (actually turn the lamp current value is probably not very accurate) is full of instructions for charging.
5, Minimum pressure: 1V
6, Conversion efficiency: up to about 95% (output voltage, the higher the efficiency)
7, Operating frequency: 300KHZ
8, Output Ripple: about the ripple 50mV (without noise) 20M bandwidth (for reference) Input 24V Output 12V 5A measured
9, Operating temperature: Industrial grade (-40 ℃ to + 85 ℃)
10, No-load current: Typical 20mA (24V switch 12V)
11, Load regulation: ± 1% (constant)
12, Voltage Regulation: ± 1%
13, Constant accuracy and temperature: the actual test, the module temperature changes from 25 degrees to 60 degrees, the change is less than 5% of the current value (current value 5A)

Немного переведу на более понятный язык.
1. Диапазон регулировки выходного напряжения - 1.25-35 Вольт
2. Выходной ток - 8 Ампер, можно 10 но с дополнительным охлаждением при помощи вентилятора.
3. Диапазон регулировки тока 0,3-10 Ампер
4. Порог выключения индикации заряда - 0.1 от установленного выходного тока.
5. Минимальная разница между входным и выходным напряжением - 1 Вольт (предположительно)
6. КПД - до 95%
7. Рабочая частота - 300кГц
8. Выходные пульсации напряжения, 50мВ при токе 5 Ампер, входном напряжении 24 и выходном 12 Вольт.
9. Диапазон рабочих температур - от - 40 ℃ до + 85 ℃.
10. Собственный ток потребления - до 20мА
11. Точность поддержания тока - ±1%
12. Точность поддержания напряжения - ±1%
13. Параметры проверены в диапазоне температур 25-60 градусов и изменение составило менее 5% при токе нагрузки 5 Ампер.

Пришел заказ в стандартном полиэтиленовом пакетике, щедро обмотанном лентой из вспененного полиэтилена. В процессе доставки ничего не пострадало.
Внутри находилась моя подопытная платка.

Внешне замечаний никаких. Вот просто крутил в руках и даже особо и придраться было не к чему, аккуратно, а если заменить конденсаторы на фирменные, то сказал бы что красиво.
На одной из сторон платы размещены два клеммника, вход и выход питания.

На второй стороне два подстроечных резистора для регулировки выходного напряжения и тока.

Так если посмотреть на фото в магазине, то платка кажется довольно большой.
Я специально два предыдущих фото также сделал крупным планом. Но понимание размера наступает когда кладешь рядом с ней спичечный коробок.
Платка реально маленькая, я не смотрел размеры когда заказывал, но мне почему то казалось, что она заметно больше. :)
Размеры платы - 65х37мм
Размеры преобразователя - 65х47х24мм

Плата двухслойная, монтаж двухсторонний.
К пайке также замечаний не возникло. Иногда бывает, что массивные контакты плохо пропаяны, но на фото видно, что здесь такого нет.
Правда элементы не пронумерованы, но думаю что ничего страшного, схема довольно простая.

Кроме силовых элементов на плате присутствует и операционный усилитель, который питается от стабилизатора 78L05, также есть и простенький источник опорного напряжения, собранный при помощи TL431.

На плате установлен мощный ШИМ контроллер , при этом он даже изолирован от радиатора.
Я не знаю зачем производитель изолировал микросхему от радиатора, так как это снижает теплоотдачу, возможно в целях безопасности, но так как плата обычно встраивается куда то, то мне кажется это лишним.

Так как плата рассчитана на довольно большой выходной ток, то в качестве силового диода применили довольно мощную диодную сборку , которую также установили на радиатор и также изолировали от него.
На мой взгляд это очень хорошее решение, но можно было его немного улучшить, если применить сборку на 60 Вольт, а не на 100.

Дроссель не очень большой, но на этом фото видно, что намотан он в два провода, что уже неплохо.

1, 2 На входе установлено два конденсатора 470мкФ х 50 В, на выходе два по 1000мкФ, но на 35 В.
Если следовать списку заявленных характеристик, то по выходу напряжение конденсаторов совсем впритык, но вряд ли кто то будет понижать напряжение с 40 до 35, не говоря о том, что 40 Вольт для микросхемы это вообще максимальное входное напряжение.
3. Входной и выходной разъемы подписаны, правда снизу платы, но это особо непринципиально.
4. А вот подстроечные резисторы никак не обозначены.
Слева регулировка максимального выходного тока, справа - напряжения.

А теперь немного разберемся с заявленными характеристиками и с тем, что имеем на самом деле.
Выше я писал, что в преобразователе применен мощный ШИМ контроллер, а точнее ШИМ контроллер со встроенным силовым транзистором.
Также выше я цитировал заявленные характеристики платы, попробуем разобраться.
Заявлено - Output voltage: continuously adjustable (1.25-35V)
Здесь вопросов нет, 35 Вольт преобразователь выдаст, даже 36 выдаст, в теории.
Заявлено - Output Current: 8A, 10A maximum
А вот здесь вопрос. Производитель микросхемы явно указывает, максимальный выходной ток 8 Ампер. В характеристиках микросхемы правда есть строка - ограничение максимального тока - 10 Ампер. Но это далеко не максимальный рабочий, 10 Ампер это предельный.
Заявлено - Operating frequency: 300KHZ
300кГц это конечно классно, можно дроссель поставить меньше габаритами, но извините, даташит вполне однозначно пишет 180кГц фиксированная частота, откуда 300?
Заявлено - Conversion efficiency: up to about 95%
Ну здесь все честно, КПД до 95%, производитель вообще заявляет до 96%, но это в теории, при определенном соотношении входного и выходного напряжения.

А вот и блок-схема ШИМ контроллера и даже пример реализации.
Кстати, здесь хорошо видно, что для 8 Ампер тока применяют дроссель не менее 12 Ампер, т.е. 1.5 от выходного тока. Я обычно рекомендую применять 2х запас.
Также здесь показано, что выходной диод можно ставить с напряжением 45 Вольт, диоды с напряжением 100 Вольт обычно имеют больше падение и соответственно снижают КПД.
Если есть цель повысить КПД данной платы, то со старых компьютерных БП можно наковырять диодов типа 20 Ампер 45 Вольт или даже 40 Ампер 45 Вольт.

Изначально я не хотел чертить схему, плата сверху закрыта деталями, маской, еще и шелкографией, но потом посмотрел, что схему перерисовать вполне реально и решил не изменять традиции:)
Индуктивность дросселя я не измерял, 47мкГн взято из даташита.
В схеме применен сдвоенный операционный усилитель, первая часть используется для регулировки и стабилизации тока, вторая для индикации. Видно что вход второго ОУ подключен через делитель 1 к 11, вообще в описании заявлено 1 к 10, но думаю что это непринципиально.

Первая проба на холостом ходу, изначально плата настроена на выходное напряжение 5 Вольт.
Напряжение стоит стабильно в диапазоне питающих напряжений 12-26 Вольт, ток потребления ниже 20мА так как не регистрируется амперметром БП.

Светодиод будет светить красным если выходной ток больше чем 1/10 (1/11) от установленного.
Такая индикация применяется для заряда аккумуляторов, так как если в процессе заряда ток упал ниже чем 1/10, то обычно считается что заряд окончен.
Т.е. выставили ток заряда 4 Ампера, светит красным пока ток не упадет ниже 400мА.
Но есть предупреждение, плата только показывает снижение тока, зарядный ток при этом не отключается, а просто снижается дальше.

Для тестирования я собрал небольшой стенд, в котором принимали участие.






Ручка и бумажка, ссылку потерял:)

Но в процессе тестирования мне в итоге пришлось потом применить и регулируемый блок питания, так как выяснилось, что из-за моих экспериментов нарушилась линейность измерения/задания тока в диапазоне 1-2 Ампера у мощного блока питания.
В итоге сначала я провел тесты нагрева и оценку уровня пульсаций.

Тестирование в этот раз происходило немного по другому чем обычно.
Измерялись температуры радиаторов в местах близких к силовым компонентам, так как температуру самих компонентов из-за плотного монтажа измерить было тяжело.
Кроме того проверялась работа в следующих режимах.
Вход - выход - ток
14В - 5В - 2А
28В - 12В - 2А
14В - 5В - 4А
И т.д. до тока 7.5 А.

Почему тестирование происходило таким хитрым способом.
1. Я не был уверен в надежности платы и поднимал ток постепенно чередуя разные режимы работы.
2. Преобразование 14 в 5 и 28 в 12 было выбрано потому, что это одни из самых часто используемых режимов, 14 (примерное напряжение бортовой сети легкового авто) в 5 (напряжение для зарядки планшетов и телефонов). 28 (напряжение бортовой сети грузового авто) в 12 (просто часто используемое напряжение.
3. Изначально у меня был план тестировать пока не отключится или не сгорит, но планы изменились и у меня возникли некоторые планы на компоненты от этой платы. потому тестировал только до 7.5 Ампер. Хотя в итоге это никак не повлияло на корректность проверки.

Ниже пара групповых фото, где я покажу тесты 5 Вольт 2 Ампера и 5 Вольт 7.5 Ампер, а также соответствующий уровень пульсаций.
Пульсации при токах 2 и 4 Ампера были похожи, также были похожи пульсации при токах 6 и 7.5 Ампера, потому промежуточные варианты я не привожу.

То же самое что выше, но 28 Вольт вход и 12 Вольт выход.

Тепловой режим при работе со входным 28 Вольт и выходным 12.
Видно что дальше ток повышать не имеет смысла, тепловизор уже показывает температуру ШИМ контроллера в 101 градус.
Для себя я использую некий лимит, температура компонентов не должна превышать 100 градусов. Вообще это зависит от самих компонентов. например транзисторы и диодные сборки можно безопасно эксплуатировать и при больших температурах, а микросхемам лучше не превышать это значение.
На фото конечно видно не очень, плата очень компактная, да и в динамике это было видно немного лучше.

Так как я посчитал, что эту плату могут использовать как зарядное устройство, то прикинул как она будет работать в режиме когда на входе 19 Вольт (типичное напряжение БП ноутбука), а на выходе 14.3 Вольта и 5.5 Ампера (типичные параметры заряда автомобильного аккумулятора).
Здесь все прошло без проблем, ну почти без проблем, но об этом позже.

Результаты измерений температур я свел в табличку.
Судя по результатам тестов, я бы рекомендовал не использовать плату при токах более 6 Ампер, по крайней мере без дополнительного охлаждения.

Выше я написал, что были некоторые особенности, объясню.
В процессе тестов я заметил, что плата ведет себя немного неадекватно при определенных ситуациях.
1.2 Выставил напряжение на выходе в 12 Вольт, ток нагрузки 6 Ампер, через 15-20 секунд напряжение на выходе упало ниже 11 Вольт, пришлось корректировать.
3,4 На выходе было выставлено 5 Вольт, на входе 14, поднял входное до 28 и выходное упало до 4 Вольт. На фото слева ток 7.5 Ампера, справа 6 Ампер, но ток роли не играл, при поднятии напряжения под нагрузкой, плата «сбрасывает» выходное напряжение.

После этого я решил проверить КПД устройства.
Производитель привел графики для разных режимов работы. Меня интересуют графики с выходным 5 и 12 Вольт и входным 12 и 24, так как они наиболее близки к моему тестированию.
В частности декларируется -

2A - 91%
4A - 88%
6A - 87%
7.5A - 85%


2A - 94%
4A - 94%
6A - 93%
7.5A - Не декларируется.

Дальше шла в принципе простая проверка, но с некоторыми нюансами.
5 Вольт тест прошел без проблем.

А вот с тестом 12 вольт были некоторые особенности, распишу.
1. 28 В вход, 12 В выход, 2 А, все нормально
2. 28 В вход, 12 В выход, 4 А, все нормально
3. Поднимаем ток нагрузки до 6 Ампер, выходное напряжение просаживается до 10.09
4. Корректируем, подняв опять до 12 Вольт.
5. Поднимаем ток нагрузки до 7.5 Ампер, опять падает, опять корректируем.
6. Опускаем ток нагрузки до 2 Ампер без коррекции, напряжение на выходе поднимается до 16,84.
Изначально я хотел показать как оно поднялось без нагрузки до 17.2, но решил что это будет некорректно и привел фото где есть нагрузка.
Да, грустно:(

Ну попутно проверил КПД в режиме заряда автомобильного аккумулятора от БП ноутбука.
Но здесь также не обошлось без особенностей. Сначала было выставлено 14.3 В на выходе, я провел тест на нагрев и отложил плату. но потом вспомнил, что хотел проверить и КПД.
Подключаю остывшую плату и наблюдаю на выходе напряжение около 14.59 Вольт, которое по мере прогрева упало до 14.33-14.35.
Т.е. по факту выходит, что у платы есть нестабильность выходного напряжения. и если для свинцово-кислотных аккумуляторов такой разбег не так критичен, то литиевые аккумуляторы такой платой заряжать нельзя категорически.

Тестов КПД у меня вышло два.
Основаны они на двух результатах измерений, хотя в итоге отличаются не очень сильно.
Р вых - расчетная выходная мощность, значение тока потребления округлено, Р вых DCL - выходная мощность, измеренная электронной нагрузкой. Входное и выходное напряжение измерялось непосредственно на клеммах платы.
Соответственно получилось два результата измерений КПД. Но в любом случае видно, что КПД примерно похож на заявленный, хотя и немного меньше.
Продублирую то, что заявлено в даташите
Для 12 Вольт вход и 5 Вольт выход
2A - 91%
4A - 88%
6A - 87%
7.5A - 85%

Для 24 Вольта вход и 12 Вольт выход.
2A - 94%
4A - 94%
6A - 93%
7.5A - Не декларируется.

И что вышло в реальности. Думаю что если заменить мощный диод на его более низковольтный аналог и поставить дроссель, рассчитанный на больший ток, то получилось бы вытянуть еще пару процентов.

На этом вроде все и я даже знаю что думают читатели -
Зачем нам куча тестов и непонятных фоток, просто скажи что в итоге, годится или нет:)
И в какой то степени читатели будут правы, по большому счету обзор можно сократить раза в 2-3, убрав часть фото с тестами, но я так уже привык, уж извините.

И так резюме.
Плюсы
Вполне качественное изготовление
Небольшой размер
Широкий диапазон входного и выходного напряжений.
Наличие индикации окончания заряда (снижения зарядного тока)
плавная регулировка тока и напряжения (без проблем можно выставить выходное напряжение с точностью 0.1 Вольта
Отличная упаковка.

Минусы .
При токах выше 6 Ампер лучше применять дополнительное охлаждение.
Максимальный ток не 10, а 8 Ампер.
Низкая точность поддержания выходного напряжения, возможная зависимость его от тока нагрузки, входного напряжения и температуры.
Иногда плата начинала «звучать», происходило это в очень узком диапазоне регулировки, например меняю выходное от 5 до 12 и при 9.5-10 Вольт тихонько пищит.

Отдельное напоминание:
Плата только отображает падение тока, отключить заряд не может, это просто преобразователь.

Мое мнение. Ну вот честно, когда сначала взял плату в руки и крутил ее, осматривая со всех сторон, то хотел хвалить. Сделана аккуратно, особых претензий не было. Когда подключил, то также особо не хотел ругаться, ну греется, так они все греются, это в принципе нормально.
Но когда увидел как скачет выходное напряжение от всего чего угодно, то расстроился.
Я не хочу проводить расследование этих проблем, так как этим должен заниматься производитель, который зарабатывает на этом деньги, но предположу, что проблема кроется в трех вещах
1. Длинная дорожка обратной связи, проходящая почти по периметру платы
2. Подстроечные резисторы, установленные вплотную к горячему дросселю
3. Дроссель расположен точно над узлом, где сосредоточена «тонкая» электроника.
4. Применены не прецизионные резисторы в цепях обратной связи.

Вывод - для нетребовательной нагрузки вполне подойдет, до 6 Ампер точно, работает неплохо. Как вариант, использовать плату в качестве драйвера мощных светодиодов, работать будет хорошо.
Использование как зарядного устройства весьма сомнительно, а в некоторых случаях опасно. Если свинцово-кислотный еще нормально отнесется к таким перепадам, то литиевые заряжать нельзя, по крайней мере без доработки.

Вот и все, как всегда жду комментариев, вопросов и дополнений.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +121 Добавить в избранное Обзор понравился +105 +225

10 Ампер относится к группе электротехнического оборудования, предназначенного для защиты электроцепи, электроустановок и людей от перегрузок, утечек тока и коротких замыканий.

По типу защиты устройства делятся на три основных группы:

  • УЗО — устройства защитного отключения;
  • защитные устройства от перегрузок;
  • дифференциальные.

Группы имеют ряд общих признаков, которые характеризуют назначение, область применения, выбор автомата (тип проводки, схемы подключения, допустимая нагрузка, принцип монтажа).

Признаки, которые имеет автомат 10А:

Устройство защитного отключения (УЗО)

УЗО 10 Ампер предназначено для защиты от тока утечки, который возникает в случае некачественного монтажа проводки и оборудования или при износе изоляции. Иногда УЗО называют выключателем дифференциального тока. Как и защитный автомат 10 А устройство ЗО выбирается по основным характеристикам.

Номинальный ток

Номинал тока указан в наименовании, это величина, в пределах которой УЗО 10А будет защищать электропроводку и запитанную от неё нагрузку, потребляющую мощность не более 2,2Квт, что соответствует току 10 Ампер. Это штатный режим работы устройства, без выхода из строя. Малая сила тока не позволяет применять УЗО 10А в варианте вводного и противопожарного.

КЗ ток

Этот параметр к УЗО не относится. Устройство не предназначено для обесточивания цепи в случае возникновения сверхтока КЗ и само не рассчитано на пиковые нагрузки. Поэтому, в схеме монтируется после автомата, который обесточит линию и убережёт УЗО от порчи. Номинал автомата всегда ниже номинала УЗО на ступень.

Дифференциальный ток

Второй основной параметр, после рабочего тока. 10-амперное УЗО может иметь широкий диапазон токов утечки, при возникновении которых произойдёт срабатывание автомата и обесточивание сети. Но, исходя из невысокой рабочей мощности, производители ограничиваются типоразмерами защитных устройств 10А 10мА и 10А 30мА. В варианте дифавтоматов 10А 100мА.

Число полюсов

10-амперные защитные устройства выпускаются в двух и четырёхполюсном варианте. Питающие и защищаемые провода идентичны, поскольку УЗО следит за балансом вход-выход, и реагирует на уменьшение ответной величины тока, выявляя утечку. Для защиты от поражения током и предотвращения пожаров УЗО должно разомкнуть как фазный проводник (проводники), так и рабочий нулевой.

Время срабатывания

Для УЗО время-токовая характеристика определяется, как и для остальных автоматических выключателей, буквенным типом (А,В,С). При этом все УЗО имеют одну особенность — отключение происходит мгновенно, без временной задержи, иначе могут пострадать люди, соприкоснувшиеся с неисправным оборудованием или открытым участком цепи.

Применение

  • осветительной проводки;
  • проводки ванной комнаты (без стиральной машины);
  • проводки в кухне (рядом с мойкой) при подключении маломощных электроприборов.

Сумма мощностей не должна превышать 2200W, это обеспечивается ограничением числа розеток на защищаемом УЗО 10 А отрезке, чтобы устройство работало корректно.

Автоматы защиты от сверхтоков и дифференциальные автоматы 10 Ампер

10-амперный автомат может выпускаться как в виде автовыключателя, так и в виде дифатомата. Отличие в том, что дифавтоматы сочетают защиту от сверхтоков КЗ с дифференциальной (от утечки).

Конструктивно дифавтоматы представляют из себя автоматический выключатель в сочетании с блоком дифзащиты. Обеспечивается 3 вида защиты: от КЗ (сверхтока) перегрузки и тока утечки.

Устройство рассчитано на ток 10 Ампер, автоматы выпускаются в варианте 1, 2, 3 и 4 полюса , дифавтоматы - 2 и 4 полюса. Ток короткого замыкания рассчитывается от номинала, для типа С он составит 50-100А, класс С рассчитан на защиту крупной бытовой техники, что наиболее актуально для применения в квартирах и частных домах. Время-токовая характеристика для 10-ти амперных устройств тип А,В,С. Тип А рассчитан на защиту полупроводниковых устройств, тип В — освещения и розеток, тип С — крупной бытовой техники (со средними электродвигателями).

Применение

В жилых и бытовых помещениях, для защиты проводки с малой нагрузкой (осветительной, для мелкой бытовой техники в ванной комнате и кухне, участка цепи). Не используются как вводные или противопожарные из-за недостаточного амперметража.

Выбираем в магазине две вещи, которые должны использоваться «в тандеме», например, утюг и розетку, и внезапно сталкиваемся с проблемой - «электропараметры» на маркировке указаны в разных единицах.

Как же подобрать подходящие друг к другу приборы и устройства? Как амперы перевести в ватты?

Смежные, но разные

Сразу надо сказать, что прямого перевода единиц сделать нельзя, поскольку обозначают они разные величины.

Ватт - указывает на мощность, т.е. скорость, с которой потребляется энергия.

Ампер - единица силы, говорящая о скорости прохождения тока через конкретное сечение.

Чтобы электрические системы работали безотказно, можно рассчитать соотношение амперов и ваттов при определенном напряжении в электросети. Последнее - измеряется в вольтах и может быть:

  • фиксированным;
  • постоянным;
  • переменным.

С учетом этого и производится сопоставление показателей.

«Фиксированный» перевод

Зная, помимо величин мощности и силы, еще и показатель напряжения, перевести амперы в ватты можно по следующей формуле:

При этом P - это мощность в ваттах, I - сила тока в амперах, U - напряжение в вольтах.

Онлайн калькулятор

Для того, чтобы постоянно быть «в теме» можно составить для себя «ампер-ватт»-таблицу с наиболее часто встречаемыми параметрами (1А, 6А, 9А и т.п.).

Такой «график соотношений» будет достоверным для сетей с фиксированным и постоянным напряжением.

«Переменные нюансы»

Для расчета при переменном напряжении в формулу включается еще одно значение - коэффициент мощности (КМ). Теперь она выглядит так:

Сделать процесс перевода единиц измерения более быстрым и простым поможет такое доступное средство, как онлайн-калькулятор «ампер в ватты». Не забывайте, что если надо ввести в графу дробное число, производится это через точку, а не через запятую.

Таким образом, на вопрос «1 ватт - сколько ампер?», с помощью калькулятора можно дать ответ - 0,0045. Но он будет справедливым только для стандартного напряжения в 220в.

Используя представленные в интернете калькуляторы и таблицы, вы сможете не мучиться над формулами, а легко сопоставить разные единицы измерения.

Это поможет подобрать автоматические выключатели на разную нагрузку и не тревожиться за свои бытовые приборы и состояние электропроводки.

Ампер - ватт таблица:

6 12 24 48 64 110 220 380 Вольт
5 Ватт 0,83 0,42 0,21 0,10 0,08 0,05 0,02 0,01 Ампер
6 Ватт 1 0,5 0,25 0,13 0,09 0,05 0,03 0,02 Ампер
7 Ватт 1,17 0,58 0,29 0,15 0,11 0,06 0,03 0,02 Ампер
8 Ватт 1,33 0,67 0,33 0,17 0,13 0,07 0,04 0,02 Ампер
9 Ватт 1,5 0,75 0,38 0,19 0,14 0,08 0,04 0,02 Ампер
10 Ватт 1,67 0,83 0,42 0,21 0,16 0,09 0,05 0,03 Ампер
20 Ватт 3,33 1,67 0,83 0,42 0,31 0,18 0,09 0,05 Ампер
30 Ватт 5,00 2,5 1,25 0,63 0,47 0,27 0,14 0,03 Ампер
40 Ватт 6,67 3,33 1,67 0,83 0,63 0,36 0,13 0,11 Ампер
50 Ватт 8,33 4,17 2,03 1,04 0,78 0,45 0,23 0,13 Ампер
60 Ватт 10,00 5 2,50 1,25 0,94 0,55 0,27 0,16 Ампер
70 Ватт 11,67 5,83 2,92 1,46 1,09 0,64 0,32 0,18 Ампер
80 Ватт 13,33 6,67 3,33 1,67 1,25 0,73 0,36 0,21 Ампер
90 Ватт 15,00 7,50 3,75 1,88 1,41 0,82 0,41 0,24 Ампер
100 Ватт 16,67 3,33 4,17 2,08 1,56 ,091 0,45 0,26 Ампер
200 Ватт 33,33 16,67 8,33 4,17 3,13 1,32 0,91 0,53 Ампер
300 Ватт 50,00 25,00 12,50 6,25 4,69 2,73 1,36 0,79 Ампер
400 Ватт 66,67 33,33 16,7 8,33 6,25 3,64 1,82 1,05 Ампер
500 Ватт 83,33 41,67 20,83 10,4 7,81 4,55 2,27 1,32 Ампер
600 Ватт 100,00 50,00 25,00 12,50 9,38 5,45 2,73 1,58 Ампер
700 Ватт 116,67 58,33 29,17 14,58 10,94 6,36 3,18 1,84 Ампер
800 Ватт 133,33 66,67 33,33 16,67 12,50 7,27 3,64 2,11 Ампер
900 Ватт 150,00 75,00 37,50 13,75 14,06 8,18 4,09 2,37 Ампер
1000 Ватт 166,67 83,33 41,67 20,33 15,63 9,09 4,55 2,63 Ампер
1100 Ватт 183,33 91,67 45,83 22,92 17,19 10,00 5,00 2,89 Ампер
1200 Ватт 200 100,00 50,00 25,00 78,75 10,91 5,45 3,16 Ампер
1300 Ватт 216,67 108,33 54,2 27,08 20,31 11,82 5,91 3,42 Ампер
1400 Ватт 233 116,67 58,33 29,17 21,88 12,73 6,36 3,68 Ампер
1500 Ватт 250,00 125,00 62,50 31,25 23,44 13,64 6,82 3,95 Ампер